Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2019

Thalmann Stefan, Gursch Heimo, Suschnigg Josef, Gashi Milot, Ennsbrunner Helmut, Fuchs Anna Katharina, Schreck Tobias, Mutlu Belgin, Mangler Jürgen, Huemer Christian, Lindstaedt Stefanie

Cognitive Decision Support for Industrial Product Life Cycles: A Position Paper

Proceedings of the Eleventh International Conference on Advanced Cognitive Technologies and Applications (COGNITIVE 2019), Marta Franova, Charlotte Sennersten, Jayfus T. Doswell, IARIA, Venice, Italy, 2019

Konferenz
Current trends in manufacturing lead to more intelligent products, produced in global supply chains in shorter cycles, taking more and complex requirements into account. To manage this increasing complexity, cognitive decision support systems, building on data analytic approaches and focusing on the product life cycle, stages seem a promising approach. With two high-tech companies (world market leader in their domains) from Austria, we are approaching this challenge and jointly develop cognitive decision support systems for three real world industrial use cases. Within this position paper, we introduce our understanding of cognitive decision support and we introduce three industrial use cases, focusing on the requirements for cognitive decision support. Finally, we describe our preliminary solution approach for each use case and our next steps.
2018

Silva Nelson, Schreck Tobias, Veas Eduardo Enrique, Sabol Vedran, Eggeling Eva, Fellner Dieter W.

Leveraging Eye-gaze and Time-series Features to Predict User Interests and Build a Recommendation Model for Visual Analysis

ACM Symposium on Eye Tracking Research and Applications ETRA, ACM, 2018

Konferenz
We developed a new concept to improve the efficiency of visual analysis through visual recommendations. It uses a novel eye-gaze based recommendation model that aids users in identifying interesting time-series patterns. Our model combines time-series features and eye-gaze interests, captured via an eye-tracker. Mouse selections are also considered. The system provides an overlay visualization with recommended patterns, and an eye-history graph, that supports the users in the data exploration process. We conducted an experiment with 5 tasks where 30 participants explored sensor data of a wind turbine. This work presents results on pre-attentive features, and discusses the precision/recall of our model in comparison to final selections made by users. Our model helps users to efficiently identify interesting time-series patterns.
2017

Shao Lin, Silva Nelson, Schreck Tobias, Eggeling Eva

Visual Exploration of Large Scatter Plot Matrices by Pattern Recommendation based on Eye Tracking

ESIDA 2017 - Proceedings of the 2017 ACM Workshop on Exploratory Search and Interactive Data Analytics, co-located with IUI 2017 - International Conference on Intelligent User Interfaces, ACM, Limassol, Cyprus, 2017

Konferenz
The Scatter Plot Matrix (SPLOM) is a well-known technique for visual analysis of high-dimensional data. However, one problem of large SPLOMs is that typically not all views are potentially relevant to a given analysis task or user. The matrix itself may contain structured patterns across the dimensions, which could interfere with the investigation for unexplored views. We introduce a new concept and prototype implementation for an interactive recommender system supporting the exploration of large SPLOMs based on indirectly obtained user feedback from user eye tracking. Our system records the patterns that are currently under exploration based on gaze times, recommending areas of the SPLOM containing potentially new, unseen patterns for successive exploration. We use an image-based dissimilarity measure to recommend patterns that are visually dissimilar to previously seen ones, to guide the exploration in large SPLOMs. The dynamic exploration process is visualized by an analysis provenance heatmap, which captures the duration on explored and recommended SPLOM areas. We demonstrate our exploration process by a user experiment, showing the indirectly controlled recommender system achieves higher pattern recall as compared to fully interactive navigation using mouse operations.
2016

Silva Nelson, Shao Lin, Schreck Tobias, Eggeling Eva, Fellner Dieter W.

Visual Exploration of Hierarchical Data Using Degree-of-Interest Controlled by Eye-Tracking

FMT 2016 : 9th Forum Media Technology 2016, Wolfgang Aigner , Grischa Schmiedl , Kerstin Blumenstein , Matthias Zeppelzauer , Michael Iber, St. Pölten, 2016

Konferenz
Effective visual exploration of large data sets is an important problem. A standard tech- nique for mapping large data sets is to use hierarchical data representations (trees, or dendrograms) that users may navigate. If the data sets get large, so do the hierar- chies, and effective methods for the naviga- tion are required. Traditionally, users navi- gate visual representations using desktop in- teraction modalities, including mouse interac- tion. Motivated by recent availability of low- cost eye-tracker systems, we investigate ap- plication possibilities to use eye-tracking for controlling the visual-interactive data explo- ration process. We implemented a proof-of- concept system for visual exploration of hier- archic data, exemplified by scatter plot dia- grams which are to be explored for grouping and similarity relationships. The exploration includes usage of degree-of-interest based dis- tortion controlled by user attention read from eye-movement behavior. We present the basic elements of our system, and give an illustra- tive use case discussion, outlining the applica- tion possibilities. We also identify interesting future developments based on the given data views and captured eye-tracking information. (13) Visual Exploration of Hierarchical Data Using Degree-of-Interest Controlled by Eye-Tracking. Available from: https://www.researchgate.net/publication/309479681_Visual_Exploration_of_Hierarchical_Data_Using_Degree-of-Interest_Controlled_by_Eye-Tracking [accessed Oct 3, 2017].
2016

Silva Nelson, Shao Lin, Schreck Tobias, Eggeling Eva, Fellner Dieter W.

Sense.me - Open Source Framework for the Exploration and Visualization of Eye Tracking Data

IEEEVis - Proc. IEEE Conference on Information Visualization, Baltimore, Maryland, USA, 2016

Konferenz
We present a new open-source prototype framework to exploreand visualize eye-tracking experiments data. Firstly, standard eyetrackersare used to record raw eye gaze data-points on user experiments.Secondly, the analyst can configure gaze analysis parameters,such as, the definition of areas of interest, multiple thresholdsor the labeling of special areas, and we upload the data to a searchserver. Thirdly, a faceted web interface for exploring and visualizingthe users’ eye gaze on a large number of areas of interest isavailable. Our framework integrates several common visualizationsand it also includes new combined representations like an eye analysisoverview and a clustered matrix that shows the attention timestrength between multiple areas of interest. The framework can bereadily used for the exploration of eye tracking experiments data.We make available the source code of our prototype framework foreye-tracking data analysis.

Silva Nelson, Blascheck Tanja, Jianu Radu, Rodrigues Nils, Weiskopf Daniel, Raubal Martin, Schreck Tobias

Eye Tracking Support for Visual Analytics Systems: Foundations, Current Applications, and Research Challenges

ACM, ACM, Denver, Colorado, USA

Konferenz
Visual analytics (VA) research provides helpful solutions for interactive visual data analysis when exploring large and complexdatasets. Due to recent advances in eye tracking technology, promising opportunities arise to extend these traditional VA approaches.Therefore, we discuss foundations for eye tracking support in VAsystems. We first review and discuss the structure and range oftypical VA systems. Based on a widely used VA model, we presentfive comprehensive examples that cover a wide range of usage scenarios. Then, we demonstrate that the VA model can be used tosystematically explore how concrete VA systems could be extendedwith eye tracking, to create supportive and adaptive analytics systems. This allows us to identify general research and applicationopportunities, and classify them into research themes. In a call foraction, we map the road for future research to broaden the use ofeye tracking and advance visual analytics.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close