Duricic Tomislav, Hussain Hussain, Lacic Emanuel, Kowald Dominik, Lex Elisabeth, Helic Denis
2020
In this work, we study the utility of graph embeddings to generate latent user representations for trust-based collaborative filtering. In a cold-start setting, on three publicly available datasets, we evaluate approaches from four method families:(i) factorization-based,(ii) random walk-based,(iii) deep learning-based, and (iv) the Large-scale Information Network Embedding (LINE) approach. We find that across the four families, random-walk-based approaches consistently achieve the best accuracy. Besides, they result in highly novel and diverse recommendations. Furthermore, our results show that the use of graph embeddings in trust-based collaborative filtering significantly improves user coverage
Kowald Dominik, Markus Schedl, Lex Elisabeth
2020
Research has shown that recommender systems are typicallybiased towards popular items, which leads to less popular items beingunderrepresented in recommendations. The recent work of Abdollahpouriet al. in the context of movie recommendations has shown that this pop-ularity bias leads to unfair treatment of both long-tail items as well asusers with little interest in popular items. In this paper, we reproducethe analyses of Abdollahpouri et al. in the context of music recommen-dation. Specifically, we investigate three user groups from the Last.fmmusic platform that are categorized based on how much their listen-ing preferences deviate from the most popular music among all Last.fmusers in the dataset: (i) low-mainstream users, (ii) medium-mainstreamusers, and (iii) high-mainstream users. In line with Abdollahpouri et al.,we find that state-of-the-art recommendation algorithms favor popularitems also in the music domain. However, their proposed Group Aver-age Popularity metric yields different results for Last.fm than for themovie domain, presumably due to the larger number of available items(i.e., music artists) in the Last.fm dataset we use. Finally, we comparethe accuracy results of the recommendation algorithms for the three usergroups and find that the low-mainstreaminess group significantly receivesthe worst recommendations.
Fadljevic Leon, Maitz Katharina, Kowald Dominik, Pammer-Schindler Viktoria, Gasteiger-Klicpera Barbara
2020
This paper describes the analysis of temporal behavior of 11--15 year old students in a heavily instructionally designed adaptive e-learning environment. The e-learning system is designed to support student's acquisition of health literacy. The system adapts text difficulty depending on students' reading competence, grouping students into four competence levels. Content for the four levels of reading competence was created by clinical psychologists, pedagogues and medicine students. The e-learning system consists of an initial reading competence assessment, texts about health issues, and learning tasks related to these texts. The research question we investigate in this work is whether temporal behavior is a differentiator between students despite the system's adaptation to students' reading competence, and despite students having comparatively little freedom of action within the system. Further, we also investigated the correlation of temporal behaviour with performance. Unsupervised clustering clearly separates students into slow and fast students with respect to the time they take to complete tasks. Furthermore, topic completion time is linearly correlated with performance in the tasks. This means that we interpret working slowly in this case as diligence, which leads to more correct answers, even though the level of text difficulty matches student's reading competence. This result also points to the design opportunity to integrate advice on overarching learning strategies, such as working diligently instead of rushing through, into the student's overall learning activity. This can be done either by teachers, or via additional adaptive learning guidance within the system.