Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2019

Toller Maximilian, Santos Tiago, Kern Roman

SAZED: parameter-free domain-agnostic season length estimation in time series data

Data Mining and Knowledge Discovery, Springer US, 2019

Journal
Season length estimation is the task of identifying the number of observations in the dominant repeating pattern of seasonal time series data. As such, it is a common pre-processing task crucial for various downstream applications. Inferring season length from a real-world time series is often challenging due to phenomena such as slightly varying period lengths and noise. These issues may, in turn, lead practitioners to dedicate considerable effort to preprocessing of time series data since existing approaches either require dedicated parameter-tuning or their performance is heavily domain-dependent. Hence, to address these challenges, we propose SAZED: spectral and average autocorrelation zero distance density. SAZED is a versatile ensemble of multiple, specialized time series season length estimation approaches. The combination of various base methods selected with respect to domain-agnostic criteria and a novel seasonality isolation technique, allow a broad applicability to real-world time series of varied properties. Further, SAZED is theoretically grounded and parameter-free, with a computational complexity of O( log ), which makes it applicable in practice. In our experiments, SAZED was statistically significantly better than every other method on at least one dataset. The datasets we used for the evaluation consist of time series data from various real-world domains, sterile synthetic test cases and synthetic data that were designed to be seasonal and yet have no finite statistical moments of any order.
2018

Santos Tiago, Walk Simon, Kern Roman, Strohmaier M., Helic Denis

Activity in Questions & Answers Websites

ACM Transactions on Social Computing, 2018

Journal
Millions of users on the Internet discuss a variety of topics on Question and Answer (Q&A) instances. However, not all instances and topics receive the same amount of attention, as some thrive and achieve self-sustaining levels of activity while others fail to attract users and either never grow beyond being a small niche community or become inactive. Hence, it is imperative to not only better understand but also to distill deciding factors and rules that define and govern sustainable Q&A instances. We aim to empower community managers with quantitative methods for them to better understand, control and foster their communities, and thus contribute to making the Web a more efficient place to exchange information. To that end, we extract, model and cluster user activity-based time series from 50 randomly selected Q&A instances from the StackExchange network to characterize user behavior. We find four distinct types of user activity temporal patterns, which vary primarily according to the users' activity frequency. Finally, by breaking down total activity in our 50 Q&A instances by the previously identified user activity profiles, we classify those 50 Q&A instances into three different activity profiles. Our categorization of Q&A instances aligns with the stage of development and maturity of the underlying communities, which can potentially help operators of such instances not only to quantitatively assess status and progress, but also allow them to optimize community building efforts
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close