Chiancone Alessandro, Cuder Gerald, Geiger Bernhard, Harzl Annemarie, Tanzer Thomas, Kern Roman
2019
This paper presents a hybrid model for the prediction of magnetostriction in power transformers by leveraging the strengths of a data-driven approach and a physics-based model. Specifically, a non-linear physics-based model for magnetostriction as a function of the magnetic field is employed, the parameters of which are estimated as linear combinations of electrical coil measurements and coil dimensions. The model is validated in a practical scenario with coil data from two different suppliers, showing that the proposed approach captures the different magnetostrictive properties of the two suppliers and provides an estimation of magnetostriction in agreement with the measurement system in place. It is argued that the combination of a non-linear physics-based model with few parameters and a linear data-driven model to estimate these parameters is attractive both in terms of model accuracy and because it allows training the data-driven part with comparably small datasets.