Luzhnica Granit, Veas Eduardo Enrique, Caitlyn Seim
2018
This paper investigates the effects of using passive haptic learning to train the skill of comprehending text from vibrotactile patterns. The method of transmitting messages, skin-reading, is effective at conveying rich information but its active training method requires full user attention, is demanding, time-consuming, and tedious. Passive haptic learning offers the possibility to learn in the background while performing another primary task. We present a study investigating the use of passive haptic learning to train for skin-reading.
Luzhnica Granit, Veas Eduardo Enrique
2018
Sensory substitution has been a research subject for decades, and yet its applicability outside of the research is very limited. Thus creating scepticism among researchers that a full sensory substitution is not even possible [8]. In this paper, we do not substitute the entire perceptual channel. Instead, we follow a different approach which reduces the captured information drastically. We present concepts and implementation of two mobile applications which capture the user's environment, describe it in the form of text and then convey its textual description to the user through a vibrotactile wearable display. The applications target users with hearing and vision impairments.
Luzhnica Granit, Veas Eduardo Enrique
2018
Vibrotactile skin-reading uses wearable vibrotactile displays to convey dynamically generated textual information. Such wearable displays have potential to be used in a broad range of applications. Nevertheless, the reading process is passive, and users have no control over the reading flow. To compensate for such drawback, this paper investigates what kind of interactions are necessary for vibrotactile skin reading and the modalities of such interactions. An interaction concept for skin reading was designed by taking into account the reading as a process. We performed a formative study with 22 participants to assess reading behaviour in word and sentence reading using a six-channel wearable vibrotactile display. Our study shows that word based interactions in sentence reading are more often used and preferred by users compared to character-based interactions and that users prefer gesture-based interaction for skin reading. Finally, we discuss how such wearable vibrotactile displays could be extended with sensors that would enable recognition of such gesture-based interaction. This paper contributes a set of guidelines for the design of wearable haptic displays for text communication.