Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Duricic Tomislav, Lacic Emanuel, Kowald Dominik, Lex Elisabeth

Trust-Based Collaborative Filtering: Tackling the Cold Start Problem Using Regular Equivalenc

RecSys 2018, ACM, Vancouver, Canada, 2018

User-based Collaborative Filtering (CF) is one of the most popularapproaches to create recommender systems. Œis approach is basedon €nding the most relevant k users from whose rating history wecan extract items to recommend. CF, however, su‚ers from datasparsity and the cold-start problem since users o‰en rate only asmall fraction of available items. One solution is to incorporateadditional information into the recommendation process such asexplicit trust scores that are assigned by users to others or implicittrust relationships that result from social connections betweenusers. Such relationships typically form a very sparse trust network,which can be utilized to generate recommendations for users basedon people they trust. In our work, we explore the use of a measurefrom network science, i.e. regular equivalence, applied to a trustnetwork to generate a similarity matrix that is used to select thek-nearest neighbors for recommending items. We evaluate ourapproach on Epinions and we €nd that we can outperform relatedmethods for tackling cold-start users in terms of recommendationaccuracy

Lacic Emanuel, Traub Matthias, Duricic Tomislav, Haslauer Eva, Lex Elisabeth

Gone in 30 Days! Predictions for Car Import Planning

it - Information Technology, De Gruyter Oldenbourg, 2018

A challenge for importers in the automobile industry is adjusting to rapidly changing market demands. In this work, we describe a practical study of car import planning based on the monthly car registrations in Austria. We model the task as a data driven forecasting problem and we implement four different prediction approaches. One utilizes a seasonal ARIMA model, while the other is based on LSTM-RNN and both compared to a linear and seasonal baselines. In our experiments, we evaluate the 33 different brands by predicting the number of registrations for the next month and for the year to come.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.