Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2017

Trattner Christoph, Elsweiler David

Investigating the Healthiness of Internet-Sourced Recipes

Proceedings of the 26th International Conference on World Wide Web, ACM, Perth, Australia, 2017

Konferenz
Food recommenders have the potential to positively in uence theeating habits of users. To achieve this, however, we need to understandhow healthy recommendations are and the factors whichin uence this. Focusing on two approaches from the literature(single item and daily meal plan recommendation) and utilizing alarge Internet sourced dataset from Allrecipes.com, we show howalgorithmic solutions relate to the healthiness of the underlyingrecipe collection. First, we analyze the healthiness of Allrecipes.comrecipes using nutritional standards from the World Health Organisationand the United Kingdom Food Standards Agency. Second,we investigate user interaction patterns and how these relate to thehealthiness of recipes. Third, we experiment with both recommendationapproaches. Our results indicate that overall the recipes inthe collection are quite unhealthy, but this varies across categorieson the website. Users in general tend to interact most often with theleast healthy recipes. Recommender algorithms tend to score popularitems highly and thus on average promote unhealthy items. Thiscan be tempered, however, with simple post- ltering approaches,which we show by experiment are better suited to some algorithmsthan others. Similarly, we show that the generation of meal planscan dramatically increase the number of healthy options open tousers. One of the main ndings is, nevertheless, that the utilityof both approaches is strongly restricted by the recipe collection.Based on our ndings we draw conclusions how researchers shouldattempt to make food recommendation systems promote healthynutrition.
2017

Mutlu Belgin, Veas Eduardo Enrique, Trattner Christoph

Tags, Titles or Q & A: Choosing Content Descriptors for Visual Recommender Systems

Proceedings of the 28th ACM Conference on Hypertext and Social Media, ACM, Prague, Czech Republic, 2017

Konferenz
In today's digital age with an increasing number of websites, social/learning platforms, and different computer-mediated communication systems, finding valuable information is a challenging and tedious task, regardless from which discipline a person is. However, visualizations have shown to be effective in dealing with huge datasets: because they are grounded on visual cognition, people understand them and can naturally perform visual operations such as clustering, filtering and comparing quantities. But, creating appropriate visual representations of data is also challenging: it requires domain knowledge, understanding of the data, and knowledge about task and user preferences. To tackle this issue, we have developed a recommender system that generates visualizations based on (i) a set of visual cognition rules/guidelines, and (ii) filters a subset considering user preferences. A user places interests on several aspects of a visualization, the task or problem it helps to solve, the operations it permits, or the features of the dataset it represents. This paper concentrates on characterizing user preferences, in particular: i) the sources of information used to describe the visualizations, the content descriptors respectively, and ii) the methods to produce the most suitable recommendations thereby. We consider three sources corresponding to different aspects of interest: a title that describes the chart, a question that can be answered with the chart (and the answer), and a collection of tags describing features of the chart. We investigate user-provided input based on these sources collected with a crowd-sourced study. Firstly, information-theoretic measures are applied to each source to determine the efficiency of the input in describing user preferences and visualization contents (user and item models). Secondly, the practicability of each input is evaluated with content-based recommender system. The overall methodology and results contribute methods for design and analysis of visual recommender systems. The findings in this paper highlight the inputs which can (i) effectively encode the content of the visualizations and user's visual preferences/interest, and (ii) are more valuable for recommending personalized visualizations.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close