Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Müller-Putz G. R., Ofner P., Schwarz Andreas, Pereira J., Luzhnica Granit, di Sciascio Maria Cecilia, Veas Eduardo Enrique, Stein Sebastian, Williamson John, Murray-Smith Roderick, Escolano C., Montesano L., Hessing B., Schneiders M., Rupp R.

MoreGrasp: Restoration of upper limb function in individuals with high spinal cord injury by multimodal neuroprostheses for interaction in daily activities

7th Graz Brain-Computer Interface Conference 2017, Graz, 2017

The aim of the MoreGrasp project is to develop a non-invasive, multimodal user interface including a brain-computer interface(BCI)for intuitive control of a grasp neuroprosthesisto supportindividuals with high spinal cord injury(SCI)in everyday activities. We describe the current state of the project, including the EEG system, preliminary results of natural movements decoding in people with SCI, the new electrode concept for the grasp neuroprosthesis, the shared control architecture behind the system and the implementation ofa user-centered design.

Luzhnica Granit, Veas Eduardo Enrique

Vibrotactile Patterns using Sensitivity Prioritisation

Proceedings of the 2017 ACM International Symposium on Wearable Computers, ACM, Maui, Hawai, USA, 2017

This paper investigates sensitivity based prioritisation in the construction of tactile patterns. Our evidence is obtained by three studies using a wearable haptic display with vibrotactile motors (tactors). Haptic displays intended to transmit symbols often suffer the tradeoff between throughput and accuracy. For a symbol encoded with more than one tactor simultaneous onsets (spatial encoding) yields the highest throughput at the expense of the accuracy. Sequential onset increases accuracy at the expense of throughput. In the desire to overcome these issues, we investigate aspects of prioritisation based on sensitivity applied to the encoding of haptics patterns. First, we investigate an encoding method using mixed intensities, where different body locations are simultaneously stimulated with different vibration intensities. We investigate whether prioritising the intensity based on sensitivity improves identification accuracy when compared to simple spatial encoding. Second, we investigate whether prioritising onset based on sensitivity affects the identification of overlapped spatiotemporal patterns. A user study shows that this method significantly increases the accuracy. Furthermore, in a third study, we identify three locations on the hand that lead to an accurate recall. Thereby, we design the layout of a haptic display equipped with eight tactors, capable of encoding 36 symbols with only one or two locations per symbol.

Luzhnica Granit, Veas Eduardo Enrique, Stein Sebastian, Pammer-Schindler Viktoria, Williamson John, Murray-Smith Roderick

Personalising Vibrotactile Displays through Perceptual Sensitivity Adjustment

Proceedings of the 2017 ACM International Symposium on Wearable Computing, ACM, Maui, Hawai, USA, 2017

Haptic displays are commonly limited to transmitting a dis- crete set of tactile motives. In this paper, we explore the transmission of real-valued information through vibrotactile displays. We simulate spatial continuity with three perceptual models commonly used to create phantom sensations: the lin- ear, logarithmic and power model. We show that these generic models lead to limited decoding precision, and propose a method for model personalization adjusting to idiosyncratic and spatial variations in perceptual sensitivity. We evaluate this approach using two haptic display layouts: circular, worn around the wrist and the upper arm, and straight, worn along the forearm. Results of a user study measuring continuous value decoding precision show that users were able to decode continuous values with relatively high accuracy (4.4% mean error), circular layouts performed particularly well, and per- sonalisation through sensitivity adjustment increased decoding precision.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.