Silva Nelson, Shao Lin, Schreck Tobias, Eggeling Eva, Fellner Dieter W.
2016
We present a new open-source prototype framework to exploreand visualize eye-tracking experiments data. Firstly, standard eyetrackersare used to record raw eye gaze data-points on user experiments.Secondly, the analyst can configure gaze analysis parameters,such as, the definition of areas of interest, multiple thresholdsor the labeling of special areas, and we upload the data to a searchserver. Thirdly, a faceted web interface for exploring and visualizingthe users’ eye gaze on a large number of areas of interest isavailable. Our framework integrates several common visualizationsand it also includes new combined representations like an eye analysisoverview and a clustered matrix that shows the attention timestrength between multiple areas of interest. The framework can bereadily used for the exploration of eye tracking experiments data.We make available the source code of our prototype framework foreye-tracking data analysis.
Silva Nelson, Shao Lin, Schreck Tobias, Eggeling Eva, Fellner Dieter W.
2016
Effective visual exploration of large data sets is an important problem. A standard tech- nique for mapping large data sets is to use hierarchical data representations (trees, or dendrograms) that users may navigate. If the data sets get large, so do the hierar- chies, and effective methods for the naviga- tion are required. Traditionally, users navi- gate visual representations using desktop in- teraction modalities, including mouse interac- tion. Motivated by recent availability of low- cost eye-tracker systems, we investigate ap- plication possibilities to use eye-tracking for controlling the visual-interactive data explo- ration process. We implemented a proof-of- concept system for visual exploration of hier- archic data, exemplified by scatter plot dia- grams which are to be explored for grouping and similarity relationships. The exploration includes usage of degree-of-interest based dis- tortion controlled by user attention read from eye-movement behavior. We present the basic elements of our system, and give an illustra- tive use case discussion, outlining the applica- tion possibilities. We also identify interesting future developments based on the given data views and captured eye-tracking information. (13) Visual Exploration of Hierarchical Data Using Degree-of-Interest Controlled by Eye-Tracking. Available from: https://www.researchgate.net/publication/309479681_Visual_Exploration_of_Hierarchical_Data_Using_Degree-of-Interest_Controlled_by_Eye-Tracking [accessed Oct 3, 2017].