Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2016

Dennerlein Sebastian, Treasure-Jones Tamsin, Lex Elisabeth, Ley Tobias

The role of collaboration and shared understanding in interprofessional teamwork

AMEE - International Conference of Medical Education 2016, AMEE 2016, 2016

Journal
Background: Teamworking, within and acrosshealthcare organisations, is essential to deliverexcellent integrated care. Drawing upon an alternationof collaborative and cooperative phases, we exploredthis teamworking and respective technologicalsupport within UK Primary Care. Participants usedBits&Pieces (B&P), a sensemaking tool for tracedexperiences that allows sharing results and mutuallyelaborating them: i.e. cooperating and/orcollaborating.Summary of Work: We conducted a two month-longcase study involving six healthcare professionals. InB&P, they reviewed organizational processes, whichrequired the involvement of different professions ineither collaborative and/or cooperative manner. Weused system-usage data, interviews and qualitativeanalysis to understand the interplay of teamworkingpracticeand technology.Summary of Results: Within our analysis we mainlyidentified cooperation phases. In a f2f-meeting,professionals collaboratively identified subtasks andassigned individuals leading collaboration on them.However, these subtasks were undertaken asindividual sensemaking efforts and finally combined(i.e. cooperation). We found few examples ofreciprocal interpretation processes (i.e. collaboration):e.g. discussing problems during sensemaking ormonitoring other’s sensemaking-outcomes to makesuggestions.Discussion: These patterns suggest that collaborationin healthcare often helps to construct a minimalshared understanding (SU) of subtasks to engage incooperation, where individuals trust in other’scompetencies and autonomous completion. However,we also found that professionals with positivecollaboration history and deepened SU were willing toundertake subtasks collaboratively. It seems thatacquiring such deepened SU of concepts andmethods, leads to benefits that motivate professionalsto collaborate more.Conclusion: Healthcare is a challenging environmentrequiring interprofessional work across organisations.For effective teamwork, a deepened SU is crucial andboth cooperation and collaboration are required.However, we found a tendency of staff to rely mainlyon cooperation when working in teams and not fullyexplore benefits of collaboration.Take Home Messages: To maximise benefits ofinterprofessional working, tools for teamworkingshould support both cooperation and collaborationprocesses and scaffold the move between them
2016

Hasani-Mavriqi Ilire, Geigl Florian, Pujari Suhbash Chandra, Lex Elisabeth, Helic Denis

The Influence of Social Status and Network Structure on Consensus Building in Collaboration Networks

Social Network Analysis and Mining, Reda Alhajj, Springer Vienna, 2016

Journal
In this paper, we study the process of opinion dynamics and consensus building in online collaboration systems, in which users interact with each other following their common interests and their social profiles. Specifically, we are interested in how users similarity and their social status in the community, as well as the interplay of those two factors influence the process of consensus dynamics. For our study, we simulate the diffusion of opinions in collaboration systems using the well-known Naming Game model, which we extend by incorporating an interaction mechanism based on user similarity and user social status. We conduct our experiments on collaborative datasets extracted from the Web. Our findings reveal that when users are guided by their similarity to other users, the process of consensus building in online collaboration systems is delayed. A suitable increase of influence of user social status on their actions can in turn facilitate this process. In summary, our results suggest that achieving an optimal consensus building process in collaboration systems requires an appropriate balance between those two factors.
2016

Kowald Dominik, Lex Elisabeth, Kopeinik Simone

Which Algorithms Suit Which Learning Environments? A Comparative Study of Recommender Systems in TEL

European Conference on Technology Enhanced Learning, EC-TEL'2016, Springer, Toledo, Spain, 2016

Konferenz
In recent years, a number of recommendation algorithmshave been proposed to help learners find suitable learning resources online.Next to user-centered evaluations, offline-datasets have been usedto investigate new recommendation algorithms or variations of collaborativefiltering approaches. However, a more extensive study comparinga variety of recommendation strategies on multiple TEL datasets ismissing. In this work, we contribute with a data-driven study of recommendationstrategies in TEL to shed light on their suitability forTEL datasets. To that end, we evaluate six state-of-the-art recommendationalgorithms for tag and resource recommendations on six empiricaldatasets: a dataset from European Schoolnets TravelWell, a dataset fromthe MACE portal, which features access to meta-data-enriched learningresources from the field of architecture, two datasets from the socialbookmarking systems BibSonomy and CiteULike, a MOOC dataset fromthe KDD challenge 2015, and Aposdle, a small-scale workplace learningdataset. We highlight strengths and shortcomings of the discussed recommendationalgorithms and their applicability to the TEL datasets.Our results demonstrate that the performance of the algorithms stronglydepends on the properties and characteristics of the particular dataset.However, we also find a strong correlation between the average numberof users per resource and the algorithm performance. A tag recommenderevaluation experiment reveals that a hybrid combination of a cognitiveinspiredand a popularity-based approach consistently performs best onall TEL datasets we utilized in our study.
2016

Traub Matthias, Lacic Emanuel, Kowald Dominik, Kahr Martin, Lex Elisabeth

Need Help? Recommending Social Care Institutions

Workshop on Recommender Systems and Big Data Analytics co-located with i-know 2016 conference, RSBDA'16, ACM, Graz, 2016

Konferenz
In this paper, we present work-in-progress on a recommender system designed to help people in need find the best suited social care institution for their personal issues. A key requirement in such a domain is to assure and to guarantee the person's privacy and anonymity in order to reduce inhibitions and to establish trust. We present how we aim to tackle this barely studied domain using a hybrid content-based recommendation approach. Our approach leverages three data sources containing textual content, namely (i) metadata from social care institutions, (ii) institution specific FAQs, and (iii) questions that a specific institution has already resolved. Additionally, our approach considers the time context of user questions as well as negative user feedback to previously provided recommendations. Finally, we demonstrate an application scenario of our recommender system in the form of a real-world Web system deployed in Austria.
2016

Stanisavljevic Darko, Hasani-Mavriqi Ilire, Lex Elisabeth, Strohmaier M., Helic Denis

Semantic Stability in Wikipedia

Complex Networks and their Applications, Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A., Springer International Publishing AG, Cham, Switzerland, 2016

Konferenz
In this paper we assess the semantic stability of Wikipedia by investigat-ing the dynamics of Wikipedia articles’ revisions over time. In a semantically stablesystem, articles are infrequently edited, whereas in unstable systems, article contentchanges more frequently. In other words, in a stable system, the Wikipedia com-munity has reached consensus on the majority of articles. In our work, we measuresemantic stability using the Rank Biased Overlap method. To that end, we prepro-cess Wikipedia dumps to obtain a sequence of plain-text article revisions, whereaseach revision is represented as a TF-IDF vector. To measure the similarity betweenconsequent article revisions, we calculate Rank Biased Overlap on subsequent termvectors. We evaluate our approach on 10 Wikipedia language editions includingthe five largest language editions as well as five randomly selected small languageeditions. Our experimental results reveal that even in policy driven collaborationnetworks such as Wikipedia, semantic stability can be achieved. However, there aredifferences on the velocity of the semantic stability process between small and largeWikipedia editions. Small editions exhibit faster and higher semantic stability than large ones. In particular, in large Wikipedia editions, a higher number of successiverevisions is needed in order to reach a certain semantic stability level, whereas, insmall Wikipedia editions, the number of needed successive revisions is much lowerfor the same level of semantic stability.
2016

Kopeinik Simone, Kowald Dominik, Hasani-Mavriqi Ilire, Lex Elisabeth

Improving Collaborative Filtering Using a Cognitive Model of Human Category Learning

Journal of WebScience, James Finlay, Now publishing, 2016

Journal
Classic resource recommenders like Collaborative Filteringtreat users as just another entity, thereby neglecting non-linear user-resource dynamics that shape attention and in-terpretation. SUSTAIN, as an unsupervised human cate-gory learning model, captures these dynamics. It aims tomimic a learner’s categorization behavior. In this paper, weuse three social bookmarking datasets gathered from Bib-Sonomy, CiteULike and Delicious to investigate SUSTAINas a user modeling approach to re-rank and enrich Collab-orative Filtering following a hybrid recommender strategy.Evaluations against baseline algorithms in terms of recom-mender accuracy and computational complexity reveal en-couraging results. Our approach substantially improves Col-laborative Filtering and, depending on the dataset, success-fully competes with a computationally much more expen-sive Matrix Factorization variant. In a further step, we ex-plore SUSTAIN’s dynamics in our specific learning task andshow that both memorization of a user’s history and clus-tering, contribute to the algorithm’s performance. Finally,we observe that the users’ attentional foci determined bySUSTAIN correlate with the users’ level of curiosity, iden-tified by the SPEAR algorithm. Overall, the results ofour study show that SUSTAIN can be used to efficientlymodel attention-interpretation dynamics of users and canhelp improve Collaborative Filtering for resource recommen-dations.
2016

Dennerlein Sebastian, Lex Elisabeth, Ruiz-Calleja Adolfo, Ley Elisabeth

Visualizing workplace learning data with the SSS Dashboard

Learning Analytics for Workplace and Professional Learning (LA for Work) workshop at LAK 2016, CEUR Workshop Proceedings, Edinburgh, 2016

Konferenz
This paper reports the design and development of a visual Dashboard, called the SSS Dashboard, which visualizes data from informal workplace learning processes from different viewpoints. The SSS Dashboard retrieves its data from the Social Semantic Server (SSS), an infrastructure that integrates data from several workplace learning applications into a semantically-enriched Artifact-Actor Network. A first evaluation with end users in a course for professional teachers gave promising results. Both a trainer and a learner could understand the learning process from different perspectives using the SSS Dashboard. The results obtained will pave the way for the development of future Learning Analytics applications that exploit the data collected by the SSS.
2016

Malarkodi C. S., Lex Elisabeth, Sobha Lalitha Devi

Named Entity Recognition for the Agricultural Domain

17th International Conference on Intelligent Text Processing and Computational Linguistics (CICLING 2016); Research in Computing Science, CICLING 2016, Springer Lecture Notes in Computer Science, Konya, Turkey, 2016

Konferenz
Agricultural data have a major role in the planning and success of rural development activi ties. Agriculturalists, planners, policy makers, gover n- ment officials, farmers and researchers require relevant information to trigger decision making processes. This paper presents our approach towards extracting named entities from real - world agricultura l data from different areas of agricu l- ture using Conditional Random Fields (CRFs). Specifically, we have created a Named Entity tagset consisting of 19 fine grained tags. To the best of our knowledge, there is no specific tag set and annotated corpus avail able for the agricultural domain. We have performed several experiments using different combination of features and obtained encouraging results. Most of the issues observed in an error analysis have been addressed by post - processing heuristic rules, which resulted in a significant improvement of our system’s accuracy
2016

Luzhnica Granit, Simon Jörg Peter, Lex Elisabeth, Pammer-Schindler Viktoria

A Sliding Window Approach to Natural Hand Gesture Recognition using a Custom Data Glove

Proceedings of the IEEE 3DUI 2016 Symposium on 3D User Interfaces, IEEE, Greenville, SC, USA, 2016

Konferenz
This paper explores the recognition of hand gestures based on a dataglove equipped with motion, bending and pressure sensors. We se-lected 31 natural and interaction-oriented hand gestures that canbe adopted for general-purpose control of and communication withcomputing systems. The data glove is custom-built, and contains13 bend sensors, 7 motion sensors, 5 pressure sensors and a magne-tometer. We present the data collection experiment, as well as thedesign, selection and evaluation of a classification algorithm. As weuse a sliding window approach to data processing, our algorithm issuitable for stream data processing. Algorithm selection and featureengineering resulted in a combination of linear discriminant anal-ysis and logistic regression with which we achieve an accuracy ofover 98. 5% on a continuous data stream scenario. When removingthe computationally expensive FFT-based features, we still achievean accuracy of 98. 2%.
2016

Lacic Emanuel, Kowald Dominik, Lex Elisabeth

High Enough? Explaining and Predicting Traveler Satisfaction Using Airline Reviews.

27th ACM Conference on Hypertext and Hypermedia, Hypertext'2016, ACM, Halifax, 2016

Konferenz
Air travel is one of the most frequently used means of transportation in our every-day life. Thus, it is not surprising that an increasing number of travelers share their experiences with airlines and airports in form of online reviews on the Web. In this work, we thrive to explain and uncover the features of airline reviews that contribute most to traveler satisfaction. To that end, we examine reviews crawled from the Skytrax air travel review portal. Skytrax provides four review categories to review airports, lounges, airlines and seats. Each review category consists of several five-star ratings as well as free-text review content. In this paper, we conducted a comprehensive feature study and we find that not only five-star rating information such as airport queuing time and lounge comfort highly correlate with traveler satisfaction but also textual features in the form of the inferred review text sentiment. Based on our findings, we created classifiers to predict traveler satisfaction using the best performing rating features. Our results reveal that given our methodology, traveler satisfaction can be predicted with high accuracy. Additionally, we find that training a model on the sentiment of the review text provides a competitive alternative when no five star rating information is available. We believe that our work is of interest for researchers in the area of modeling and predicting user satisfaction based on available review data on the Web.
2016

Dennerlein Sebastian, Ley Tobias, , Lex Elisabeth, Seitlinger Paul

Take up my Tags: Exploring Benefits of Collaborative Learning in a Social Tagging Field Study at the Workplace

European Conference on Technology Enhanced Learning (EC-TEL 2016), EC-TEL 2016, Springer-Verlag, Cham, 2016

Konferenz
In the digital realm, meaning making is reflected in the reciprocal manipulation of mediating artefacts. We understand uptake, i.e. interaction with and understanding of others’ artefact interpretations, as central mechanism and investigate its impact on individual and social learning at work. Results of our social tagging field study indicate that increased uptake of others’ tags is related to a higher shared understanding of collaborators as well as narrower and more elaborative exploration in individual information search. We attribute the social and individual impact to accommodative processes in the high uptake condition.
2016

Kraker Peter, Peters Isabella, Lex Elisabeth, Gumpenberger Christian , Gorraiz Juan

Research data explored: an extended analysis of citations and alt metrics

Journal of Scientometrics, Springer Link, Springer-Verlag, Cham, 2016

Journal
In this study, we explore the citedness of research data, its distribution overtime and its relation to the availability of a digital object identifier (DOI) in the ThomsonReuters database Data Citation Index (DCI). We investigate if cited research data ‘‘im-pacts’’ the (social) web, reflected by altmetrics scores, and if there is any relationshipbetween the number of citations and the sum of altmetrics scores from various social mediaplatforms. Three tools are used to collect altmetrics scores, namely PlumX, ImpactStory,and Altmetric.com, and the corresponding results are compared. We found that out of thethree altmetrics tools, PlumX has the best coverage. Our experiments revealed thatresearch data remain mostly uncited (about 85 %), although there has been an increase inciting data sets published since 2008. The percentage of the number of cited research datawith a DOI in DCI has decreased in the last years. Only nine repositories are responsible for research data with DOIs and two or more citations. The number of cited research datawith altmetrics ‘‘foot-prints’’ is even lower (4–9 %) but shows a higher coverage ofresearch data from the last decade. In our study, we also found no correlation between thenumber of citations and the total number of altmetrics scores. Yet, certain data types (i.e.survey, aggregate data, and sequence data) are more often cited and also receive higheraltmetrics scores. Additionally, we performed citation and altmetric analyses of allresearch data published between 2011 and 2013 in four different disciplines covered by theDCI. In general, these results correspond very well with the ones obtained for research datacited at least twice and also show low numbers in citations and in altmetrics. Finally, weobserved that there are disciplinary differences in the availability and extent of altmetricsscores.
2016

Santos Patricia, Dennerlein Sebastian, Theiler Dieter, Cook John, Treasure-Jones Tamsin, Holley Debbie, Kerr Micky , Atwell Graham, Kowald Dominik, Lex Elisabeth

Going beyond your Personal Learning Network, using Recommendations and Trust through a Multimedia Question-Answering Service for Decision-support: a Case Study in the Healthcare

Journal of Universal Computer Science, J.UCS, J. UCS Consortium, 2016

Journal
Social learning networks enable the sharing, transfer and enhancement of knowledge in the workplace that builds the ground to exchange informal learning practices. In this work, three healthcare networks are studied in order to understand how to enable the building, maintaining and activation of new contacts at work and the exchange of knowledge between them. By paying close attention to the needs of the practitioners, we aimed to understand how personal and social learning could be supported by technological services exploiting social networks and the respective traces reflected in the semantics. This paper presents a case study reporting on the results of two co-design sessions and elicits requirements showing the importance of scaffolding strategies in personal and shared learning networks. Besides, the significance of these strategies to aggregate trust among peers when sharing resources and decision-support when exchanging questions and answers. The outcome is a set of design criteria to be used for further technical development for a social tool. We conclude with the lessons learned and future work.
2016

Kowald Dominik, Lex Elisabeth

The Influence of Frequency, Recency and Semantic Context on the Reuse of Tags in Social Tagging Systems

27th ACM Conference on Hypertext and Hypermedia, Hypertext'2016, ACM, Halifax, 2016

Konferenz
In this paper, we study factors that in uence tag reuse behavior in social tagging systems. Our work is guided by the activation equation of the cognitive model ACT-R, which states that the usefulness of information in human memory depends on the three factors usage frequency, recency and semantic context. It is our aim to shed light on the in uence of these factors on tag reuse. In our experiments, we utilize six datasets from the social tagging systems Flickr, CiteULike, BibSonomy, Delicious, LastFM and MovieLens, covering a range of various tagging settings. Our results con rm that frequency, recency and semantic context positively in uence the reuse probability of tags. However, the extent to which each factor individually in uences tag reuse strongly depends on the type of folksonomy present in a social tagging system. Our work can serve as guideline for researchers and developers of tag-based recommender systems when designing algorithms for social tagging environments.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close