Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2016

Kowald Dominik, Lex Elisabeth, Kopeinik Simone

Which Algorithms Suit Which Learning Environments? A Comparative Study of Recommender Systems in TEL

European Conference on Technology Enhanced Learning, EC-TEL'2016, Springer, Toledo, Spain, 2016

Konferenz
In recent years, a number of recommendation algorithmshave been proposed to help learners find suitable learning resources online.Next to user-centered evaluations, offline-datasets have been usedto investigate new recommendation algorithms or variations of collaborativefiltering approaches. However, a more extensive study comparinga variety of recommendation strategies on multiple TEL datasets ismissing. In this work, we contribute with a data-driven study of recommendationstrategies in TEL to shed light on their suitability forTEL datasets. To that end, we evaluate six state-of-the-art recommendationalgorithms for tag and resource recommendations on six empiricaldatasets: a dataset from European Schoolnets TravelWell, a dataset fromthe MACE portal, which features access to meta-data-enriched learningresources from the field of architecture, two datasets from the socialbookmarking systems BibSonomy and CiteULike, a MOOC dataset fromthe KDD challenge 2015, and Aposdle, a small-scale workplace learningdataset. We highlight strengths and shortcomings of the discussed recommendationalgorithms and their applicability to the TEL datasets.Our results demonstrate that the performance of the algorithms stronglydepends on the properties and characteristics of the particular dataset.However, we also find a strong correlation between the average numberof users per resource and the algorithm performance. A tag recommenderevaluation experiment reveals that a hybrid combination of a cognitiveinspiredand a popularity-based approach consistently performs best onall TEL datasets we utilized in our study.
2016

Kopeinik Simone, Kowald Dominik, Hasani-Mavriqi Ilire, Lex Elisabeth

Improving Collaborative Filtering Using a Cognitive Model of Human Category Learning

Journal of WebScience, James Finlay, Now publishing, 2016

Journal
Classic resource recommenders like Collaborative Filteringtreat users as just another entity, thereby neglecting non-linear user-resource dynamics that shape attention and in-terpretation. SUSTAIN, as an unsupervised human cate-gory learning model, captures these dynamics. It aims tomimic a learner’s categorization behavior. In this paper, weuse three social bookmarking datasets gathered from Bib-Sonomy, CiteULike and Delicious to investigate SUSTAINas a user modeling approach to re-rank and enrich Collab-orative Filtering following a hybrid recommender strategy.Evaluations against baseline algorithms in terms of recom-mender accuracy and computational complexity reveal en-couraging results. Our approach substantially improves Col-laborative Filtering and, depending on the dataset, success-fully competes with a computationally much more expen-sive Matrix Factorization variant. In a further step, we ex-plore SUSTAIN’s dynamics in our specific learning task andshow that both memorization of a user’s history and clus-tering, contribute to the algorithm’s performance. Finally,we observe that the users’ attentional foci determined bySUSTAIN correlate with the users’ level of curiosity, iden-tified by the SPEAR algorithm. Overall, the results ofour study show that SUSTAIN can be used to efficientlymodel attention-interpretation dynamics of users and canhelp improve Collaborative Filtering for resource recommen-dations.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close