Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Rexha Andi, Kern Roman, Dragoni Mauro , Kröll Mark

Exploiting Propositions for Opinion Mining

ESWC-16 Challenge on Semantic Sentiment Analysis, Springer Link, Springer-Verlag, Crete, Greece, 2016

With different social media and commercial platforms, users express their opinion about products in a textual form. Automatically extracting the polarity (i.e. whether the opinion is positive or negative) of a user can be useful for both actors: the online platform incorporating the feedback to improve their product as well as the client who might get recommendations according to his or her preferences. Different approaches for tackling the problem, have been suggested mainly using syntactic features. The “Challenge on Semantic Sentiment Analysis” aims to go beyond the word-level analysis by using semantic information. In this paper we propose a novel approach by employing the semantic information of grammatical unit called preposition. We try to drive the target of the review from the summary information, which serves as an input to identify the proposition in it. Our implementation relies on the hypothesis that the proposition expressing the target of the summary, usually containing the main polarity information.

Rexha Andi, Dragoni Mauro, Kern Roman, Kröll Mark

An Information Retrieval Based Approach for Multilingual Ontology Matching

International Conference on Applications of Natural Language to Information Systems, Métais E., Meziane F., Saraee M., Sugumaran V., Vadera S. , Springer , Salford, UK, 2016

Ontology matching in a multilingual environment consists of finding alignments between ontologies modeled by using more than one language. Such a research topic combines traditional ontology matching algorithms with the use of multilingual resources, services, and capabilities for easing multilingual matching. In this paper, we present a multilingual ontology matching approach based on Information Retrieval (IR) techniques: ontologies are indexed through an inverted index algorithm and candidate matches are found by querying such indexes. We also exploit the hierarchical structure of the ontologies by adopting the PageRank algorithm for our system. The approaches have been evaluated using a set of domain-specific ontologies belonging to the agricultural and medical domain. We compare our results with existing systems following an evaluation strategy closely resembling a recommendation scenario. The version of our system using PageRank showed an increase in performance in our evaluations.

Dragoni Mauro, Rexha Andi, Kröll Mark, Kern Roman

Polarity Classification for Target Phrases in Tweets: A Word2Vec approach

The Semantic Web, ESWC 2016 Satellite Events, ESWC 2016, Springer-Verlag, Crete, Greece, 2016

Twitter is one of the most popular micro-blogging serviceson the web. The service allows sharing, interaction and collaboration viashort, informal and often unstructured messages called tweets. Polarityclassification of tweets refers to the task of assigning a positive or a nega-tive sentiment to an entire tweet. Quite similar is predicting the polarityof a specific target phrase, for instance@Microsoftor#Linux,whichiscontained in the tweet.In this paper we present a Word2Vec approach to automatically pre-dict the polarity of a target phrase in a tweet. In our classification setting,we thus do not have any polarity information but use only semantic infor-mation provided by a Word2Vec model trained on Twitter messages. Toevaluate our feature representation approach, we apply well-establishedclassification algorithms such as the Support Vector Machine and NaiveBayes. For the evaluation we used theSemeval 2016 Task #4dataset.Our approach achieves F1-measures of up to∼90 % for the positive classand∼54 % for the negative class without using polarity informationabout single words.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.