Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Gursch Heimo, Ziak Hermann, Kern Roman

Unified Information Access for Knowledge Workers via a Federated Recommender System

Mensch und Computer 2015 – Workshopband, Anette Weisbecker, Michael Burmester, Albrecht Schmidt, De Gruyter Oldenbourg, Berlin, 2015

The objective of the EEXCESS (Enhancing Europe’s eXchange in Cultural Educational and Scientific reSources) project is to develop a system that can automatically recommend helpful and novel content to knowledge workers. The EEXCESS system can be integrated into existing software user interfaces as plugins which will extract topics and suggest the relevant material automatically. This recommendation process simplifies the information gathering of knowledge workers. Recommendations can also be triggered manually via web frontends. EEXCESS hides the potentially large number of knowledge sources by semi or fully automatically providing content suggestions. Hence, users only have to be able to in use the EEXCESS system and not all sources individually. For each user, relevant sources can be set or auto-selected individually. EEXCESS offers open interfaces, making it easy to connect additional sources and user program plugins.

Ziak Hermann, Kern Roman

Evaluation of Pseudo Relevance Feedback Techniques for Cross Vertical Aggregated Search

6th International Conference of the CLEF Association, CLEF'15, Toulouse, France, September 8-11, 2015, Proceedings, Springer, 2015

Cross vertical aggregated search is a special form of meta search, were multiple search engines from different domains and varying behaviour are combined to produce a single search result for each query. Such a setting poses a number of challenges, among them the question of how to best evaluate the quality of the aggregated search results. We devised an evaluation strategy together with an evaluation platform in order to conduct a series of experiments. In particular, we are interested whether pseudo relevance feedback helps in such a scenario. Therefore we implemented a number of pseudo relevance feedback techniques based on knowledge bases, where the knowledge base is either Wikipedia or a combination of the underlying search engines themselves. While conducting the evaluations we gathered a number of qualitative and quantitative results and gained insights on how different users compare the quality of search result lists. In regard to the pseudo relevance feedback we found that using Wikipedia as knowledge base generally provides a benefit, unless for entity centric queries, which are targeting single persons or organisations. Our results will enable to help steering the development of cross vertical aggregated search engines and will also help to guide large scale evaluation strategies, for example using crowd sourcing techniques.

Rubien Raoul, Ziak Hermann, Kern Roman

Efficient Search Result Diversification via Query Expansion Using Knowledge Bases

Proceedings of 12th International Workshop on Text-based Information Retrieval (TIR), 2015

Underspecified search queries can be performed via result list diversification approaches, which are often compu- tationally complex and require longer response times. In this paper, we explore an alternative, and more efficient way to diversify the result list based on query expansion. To that end, we used a knowledge base pseudo-relevance feedback algorithm. We compared our algorithm to IA-Select, a state-of-the-art diversification method, using its intent-aware version of the NDCG (Normalized Discounted Cumulative Gain) metric. The results indicate that our approach can guarantee a similar extent of diversification as IA-Select. In addition, we showed that the supported query language of the underlying search engines plays an important role in the query expansion based on diversification. Therefore, query expansion may be an alternative when result diversification is not feasible, for example in federated search systems where latency and the quantity of handled search results are critical issues.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.