Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2015

Veas Eduardo Enrique, Mutlu Belgin, di Sciascio Maria Cecilia, Tschinkel Gerwald, Sabol Vedran

Visual Recommendations for Scientific and Cultural Content

IVAPP 2015, Berlin, 2015

Konferenz
Supporting individuals who lack experience or competence to evaluate an overwhelming amout of informationsuch as from cultural, scientific and educational content makes recommender system invaluable to cope withthe information overload problem. However, even recommended information scales up and users still needto consider large number of items. Visualization takes a foreground role, letting the user explore possiblyinteresting results. It leverages the high bandwidth of the human visual system to convey massive amounts ofinformation. This paper argues the need to automate the creation of visualizations for unstructured data adaptingit to the user’s preferences. We describe a prototype solution, taking a radical approach considering bothgrounded visual perception guidelines and personalized recommendations to suggest the proper visualization.
2015

Tschinkel Gerwald, di Sciascio Maria Cecilia, Mutlu Belgin, Sabol Vedran

The Recommendation Dashboard: A System to Visualise and Organise Recommendations

Proceedings of the 19th International Conference on Information Visualisation (IV2015), 2015

Konferenz
Recommender systems are becoming common tools supportingautomatic, context-based retrieval of resources.When the number of retrieved resources grows large visualtools are required that leverage the capacity of humanvision to analyse large amounts of information. Weintroduce a Web-based visual tool for exploring and organisingrecommendations retrieved from multiple sourcesalong dimensions relevant to cultural heritage and educationalcontext. Our tool provides several views supportingfiltering in the result set and integrates a bookmarkingsystem for organising relevant resources into topic collections.Building upon these features we envision a systemwhich derives user’s interests from performed actions anduses this information to support the recommendation process.We also report on results of the performed usabilityevaluation and derive directions for further development.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close