Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Veas Eduardo Enrique, Sabol Vedran, Singh Santokh, Ulbrich Eva Pauline

Reading through Graphics: Interactive Landscapes to Explore Dynamic Topic Spaces

Proceedings Part I of the 17th HCI International Conference, HCI International 2015, Los Angeles, CA, USA, August 2-7, 2015, 2015

An information landscape is commonly used to represent relatedness in large, high-dimensional datasets, such as text document collections. In this paper we present interactive metaphors, inspired in map reading and visual transitions, that enhance the landscape representation for the analysis of topical changes in dynamic text repositories. The goal of interactive visualizations is to elicit insight, to allow users to visually formulate hypotheses about the underlying data and to prove them. We present a user study that investigates how users can elicit information about topics in a large document set. Our study concentrated on building and testing hypotheses using the map reading metaphors. The results show that people indeed relate topics in the document set from spatial relationships shown in the landscape, and capture the changes to topics aided by map reading metaphors.

Seifert Christin, Ulbrich Eva Pauline, Granitzer Michael

Word Clouds for Efficient Document Labeling

The Fourteenth International Conference on Discovery Science (DS 2011), Lecture Notes in Computer Science, Springer, 2011

In text classification the amount and quality of training datais crucial for the performance of the classifier. The generation of trainingdata is done by human labelers - a tedious and time-consuming work. Wepropose to use condensed representations of text documents instead ofthe full-text document to reduce the labeling time for single documents.These condensed representations are key sentences and key phrases andcan be generated in a fully unsupervised way. The key phrases are presentedin a layout similar to a tag cloud. In a user study with 37 participantswe evaluated whether document labeling with these condensedrepresentations can be done faster and equally accurate by the humanlabelers. Our evaluation shows that the users labeled word clouds twiceas fast but as accurately as full-text documents. While further investigationsfor different classification tasks are necessary, this insight couldpotentially reduce costs for the labeling process of text documents.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.