Stegmaier Florian, Seifert Christin, Kern Roman, Höfler Patrick, Bayerl Sebastian, Granitzer Michael, Kosch Harald, Lindstaedt Stefanie , Mutlu Belgin, Sabol Vedran, Schlegel Kai
2014
Research depends to a large degree on the availability and quality of primary research data, i.e., data generated through experiments and evaluations. While the Web in general and Linked Data in particular provide a platform and the necessary technologies for sharing, managing and utilizing research data, an ecosystem supporting those tasks is still missing. The vision of the CODE project is the establishment of a sophisticated ecosystem for Linked Data. Here, the extraction of knowledge encapsulated in scientific research paper along with its public release as Linked Data serves as the major use case. Further, Visual Analytics approaches empower end users to analyse, integrate and organize data. During these tasks, specific Big Data issues are present.
Rauch Manuela, Wozelka Ralph, Veas Eduardo Enrique, Sabol Vedran
2014
Graphs are widely used to represent relationshipsbetween entities. Indeed, their simplicity in depicting connect-edness backed by a mathematical formalism, make graphs anideal metaphor to convey relatedness between entities irrespec-tive of the domain. However, graphs pose several challenges forvisual analysis. A large number of entities or a densely con-nected set quickly render the graph unreadable due to clutter.Typed relationships leading to multigraphs cannot clearly berepresented in hierarchical layout or edge bundling, commonclutter reduction techniques. We propose a novel approach tovisual analysis of complex graphs based on two metaphors:semantic blossom and selective expansion. Instead of showingthe whole graph, we display only a small representative subsetof nodes, each with a compressed summary of relations in asemantic blossom. Users apply selective expansion to traversethe graph and discover the subset of interest. A preliminaryevaluation showed that our approach is intuitive and usefulfor graph exploration and provided insightful ideas for futureimprovements.
Tschinkel Gerwald, Veas Eduardo Enrique, Mutlu Belgin, Sabol Vedran
2014
Providing easy to use methods for visual analysis of LinkedData is often hindered by the complexity of semantic technologies. Onthe other hand, semantic information inherent to Linked Data providesopportunities to support the user in interactively analysing the data. Thispaper provides a demonstration of an interactive, Web-based visualisa-tion tool, the “Vis Wizard”, which makes use of semantics to simplify theprocess of setting up visualisations, transforming the data and, most im-portantly, interactively analysing multiple datasets using brushing andlinking method
Sabol Vedran, Albert Dietrich, Veas Eduardo Enrique, Mutlu Belgin, Granitzer Michael
2014
Linked Data has grown to become one of the largest availableknowledge bases. Unfortunately, this wealth of data remains inaccessi-ble to those without in-depth knowledge of semantic technologies. Wedescribe a toolchain enabling users without semantic technology back-ground to explore and visually analyse Linked Data. We demonstrateits applicability in scenarios involving data from the Linked Open DataCloud, and research data extracted from scientific publications. Our fo-cus is on the Web-based front-end consisting of querying and visuali-sation tools. The performed usability evaluations unveil mainly positiveresults confirming that the Query Wizard simplifies searching, refiningand transforming Linked Data and, in particular, that people using theVisualisation Wizard quickly learn to perform interactive analysis taskson the resulting Linked Data sets. In making Linked Data analysis ef-fectively accessible to the general public, our tool has been integratedin a number of live services where people use it to analyse, discover anddiscuss facts with Linked Data.
Mutlu Belgin, Tschinkel Gerwald, Veas Eduardo Enrique, Sabol Vedran, Stegmaier Florian, Granitzer Michael
2014
Research papers are published in various digital libraries, which deploy their own meta-models and tech-nologies to manage, query, and analyze scientific facts therein. Commonly they only consider the meta-dataprovided with each article, but not the contents. Hence, reaching into the contents of publications is inherentlya tedious task. On top of that, scientific data within publications are hardcoded in a fixed format (e.g. tables).So, even if one manages to get a glimpse of the data published in digital libraries, it is close to impossibleto carry out any analysis on them other than what was intended by the authors. More effective querying andanalysis methods are required to better understand scientific facts. In this paper, we present the web-basedCODE Visualisation Wizard, which provides visual analysis of scientific facts with emphasis on automatingthe visualisation process, and present an experiment of its application. We also present the entire analyticalprocess and the corresponding tool chain, including components for extraction of scientific data from publica-tions, an easy to use user interface for querying RDF knowledge bases, and a tool for semantic annotation ofscientific data set