Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Pimas Oliver, Klampfl Stefan, Kohl Thomas, Kern Roman, Kröll Mark

Generating Tailored Classification Schemas for German Patents

21st International Conference on Applications of Natural Language to Information Systems, NLDB 2016, Springer-Verlag, Salford, UK, 2016

Patents and patent applications are important parts of acompany’s intellectual property. Thus, companies put a lot of effort indesigning and maintaining an internal structure for organizing their ownpatent portfolios, but also in keeping track of competitor’s patent port-folios. Yet, official classification schemas offered by patent offices (i) areoften too coarse and (ii) are not mappable, for instance, to a company’sfunctions, applications, or divisions. In this work, we present a first steptowards generating tailored classification. To automate the generationprocess, we apply key term extraction and topic modelling algorithmsto 2.131 publications of German patent applications. To infer categories,we apply topic modelling to the patent collection. We evaluate the map-ping of the topics found via the Latent Dirichlet Allocation method tothe classes present in the patent collection as assigned by the domainexpert.

Pimas Oliver, Rexha Andi, Kröll Mark, Kern Roman

Profiling microblog authors using concreteness and sentiment - Know-Center at PAN 2016 author profiling

PAN 2016, Krisztian Balog, Linda Cappellato, Nicola Ferro, Craig Macdonald, Springer, Evora, Portugal, 2016

The PAN 2016 author profiling task is a supervised classification problemon cross-genre documents (tweets, blog and social media posts). Our systemmakes use of concreteness, sentiment and syntactic information present in thedocuments. We train a random forest model to identify gender and age of a document’sauthor. We report the evaluation results received by the shared task.

Pimas Oliver, Kröll Mark, Kern Roman

Know-Center at PAN 2015 author identification

Lecture Notes in Computer Science, Working Notes Papers of the CLEF 2015 Evaluation Labs, Springer Link, Toulouse, France, 2015

Our system for the PAN 2015 authorship verification challenge is basedupon a two step pre-processing pipeline. In the first step we extract different fea-tures that observe stylometric properties, grammatical characteristics and purestatistical features. In the second step of our pre-processing we merge all thosefeatures into a single meta feature space. We train an SVM classifier on the gener-ated meta features to verify the authorship of an unseen text document. We reportthe results from the final evaluation as well as on the training datasets

Horn Christopher, Pimas Oliver, Granitzer Michael, Lex Elisabeth

Realtime Ad Hoc Search in Twitter: Know-Center at TREC Microblog Track 2011

Proceedings of TREC 2011, 2011

In this paper, we outline our experiments carried out at theTREC Microblog Track 2011. Our system is based on a plain text indexextracted from Tweets crawled from This index hasbeen used to retrieve candidate Tweets for the given topics. The resultingTweets were post-processed and then analyzed using three differentapproaches: (i) a burst detection approach, (ii) a hashtag analysis, and(iii) a Retweet analysis. Our experiments consisted of four runs: Firstly,a combination of the Lucene ranking with the burst detection, and secondly,a combination of the Lucene ranking, the burst detection, and thehashtag analysis. Thirdly, a combination of the Lucene ranking, the burstdetection, the hashtag analysis, and the Retweet analysis, and fourthly,again a combination of the Lucene ranking with the burst detection butin this case with more sophisticated query language and post-processing.We achieved the best MAP values overall in the fourth run.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.