Pammer-Schindler Viktoria, Serafini L., Lindstaedt Stefanie
2009
Lindstaedt Stefanie , Rospocher M., Ghidini C., Pammer-Schindler Viktoria, Serafini L.
2009
Enterprise modelling focuses on the construction of a structureddescription of relevant aspects of an enterprise, the so-called enterprisemodel. Within this contribution we describe a wiki-based tool forenterprise modelling, called MoKi (Modelling wiKi). It specifically facilitatescollaboration between actors with different expertise to develop anenterprise model by using structural (formal) descriptions as well as moreinformal and semi-formal descriptions of knowledge. It also supports theintegrated development of interrelated models covering different aspectsof an enterprise.
Lindstaedt Stefanie , Ghidini C., Kump Barbara, Mahbub N., Pammer-Schindler Viktoria, Rospocher M., Serafini L.
2009
Enterprise modelling focuses on the construction of a structureddescription, the so-called enterprise model, which represents aspectsrelevant to the activity of an enterprise. Although it has becomeclearer recently that enterprise modelling is a collaborative activity, involvinga large number of people, most of the enterprise modelling toolsstill only support very limited degrees of collaboration. Within thiscontribution we describe a tool for enterprise modelling, called MoKi(MOdelling wiKI), which supports agile collaboration between all differentactors involved in the enterprise modelling activities. MoKi is basedon a Semantic Wiki and enables actors with different expertise to developan enterprise model not only using structural (formal) descriptions butalso adopting more informal and semi-formal descriptions of knowledge.
Lindstaedt Stefanie , Moerzinger R., Sorschag R. , Pammer-Schindler Viktoria, Thallinger G.
2009
Automatic image annotation is an important and challenging task, andbecomes increasingly necessary when managing large image collections. This paperdescribes techniques for automatic image annotation that take advantage of collaborativelyannotated image databases, so called visual folksonomies. Our approachapplies two techniques based on image analysis: First, classification annotates imageswith a controlled vocabulary and second tag propagation along visually similar images.The latter propagates user generated, folksonomic annotations and is thereforecapable of dealing with an unlimited vocabulary. Experiments with a pool of Flickrimages demonstrate the high accuracy and efficiency of the proposed methods in thetask of automatic image annotation. Both techniques were applied in the prototypicaltag recommender “tagr”.