Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Lacic Emanuel, Kowald Dominik, Eberhard Lukas, Trattner Christoph, Parra Denis, Marinho Leandro

Utilizing Online Social Network and Location-Based Data to Recommend Products and Categories in Online Marketplaces

Mining, Modeling, and Recommending'Things' in Social Media, MSM'2015, Springer, 2015

Recent research has unveiled the importance of online social networks for improving the quality of recommender systems and encouraged the research community to investigate better ways of exploiting the social information for recommendations. To contribute to this sparse field of research, in this paper we exploit users’ interactions along three data sources (marketplace, social network and location-based) to assess their performance in a barely studied domain: recommending products and domains of interests (i.e., product categories) to people in an online marketplace environment. To that end we defined sets of content- and network-based user similarity features for each data source and studied them isolated using an user-based Collaborative Filtering (CF) approach and in combination via a hybrid recommender algorithm, to assess which one provides the best recommendation performance. Interestingly, in our experiments conducted on a rich dataset collected from SecondLife, a popular online virtual world, we found that recommenders relying on user similarity features obtained from the social network data clearly yielded the best results in terms of accuracy in case of predicting products, whereas the features obtained from the marketplace and location-based data sources also obtained very good results in case of predicting categories. This finding indicates that all three types of data sources are important and should be taken into account depending on the level of specialization of the recommendation task.

Lacic Emanuel, Luzhnica Granit, Simon Jörg Peter, Traub Matthias, Lex Elisabeth, Kowald Dominik

Tackling Cold-Start Users in Recommender Systems with Indoor Positioning Systems

Proceedings of 9th International Conference on Recommender Systems, RecSys'2015, ACM, Vienna, Austria, 2015

In this paper, we present work-in-progress on a recommender system based on Collaborative Filtering that exploits location information gathered by indoor positioning systems. This approach allows us to provide recommendations for "extreme" cold-start users with absolutely no item interaction data available, where methods based on Matrix Factorization would not work. We simulate and evaluate our proposed system using data from the location-based FourSquare system and show that we can provide substantially better recommender accuracy results than a simple MostPopular baseline that is typically used when no interaction data is available.

Lacic Emanuel, Traub Matthias, Kowald Dominik, Lex Elisabeth

ScaR: Towards a Real-Time Recommender Framework Following the Microservices Architecture

In the Large-Scale Recommender Systems Workshop (LSRS'15) at the 9th International Conference on Recommender Systems, RecSys'2015, ACM, Vienna, Austria, 2015

In this paper, we present our approach towards an effective scalable recommender framework termed ScaR. Our framework is based on the microservices architecture and exploits search technology to provide real-time recommendations. Since it is our aim to create a system that can be used in a broad range of scenarios, we designed it to be capable of handling various data streams and sources. We show its efficacy and scalability with an initial experiment on how the framework can be used in a large-scale setting.

Dennerlein Sebastian, Kowald Dominik, Lex Elisabeth, Lacic Emanuel, Theiler Dieter, Ley Tobias

The Social Semantic Server: A Flexible Framework to Support Informal Learning at the Workplace

In Proceedings of the 15th International Conference on Knowledge Technologies and Data-Driven Business, i-know 2015, ACM, Graz, Austria, 2015

Informal learning at the workplace includes a multitude of processes. Respective activities can be categorized into multiple perspectives on informal learning, such as reflection, sensemaking, help seeking and maturing of collective knowledge. Each perspective raises requirements with respect to the technical support, this is why an integrated solution relying on social, adaptive and semantic technologies is needed. In this paper, we present the Social Semantic Server, an extensible, open-source application server that equips clientside tools with services to support and scale informal learning at the workplace. More specifically, the Social Semantic Server semantically enriches social data that is created at the workplace in the context of user-to-user or user-artifact interactions. This enriched data can then in turn be exploited in informal learning scenarios to, e.g., foster help seeking by recommending collaborators, resources, or experts. Following the design-based research paradigm, the Social Semantic Server has been implemented based on design principles, which were derived from theories such as Distributed Cognition and Meaning Making. We illustrate the applicability and efficacy of the Social Semantic Server in the light of three real-world applications that have been developed using its social semantic services. Furthermore, we report preliminary results of two user studies that have been carried out recently.

Traub Matthias, Kowald Dominik, Lacic Emanuel, Lex Elisabeth, Schoen Pepjin, Supp Gernot

Smart booking without looking: providing hotel recommendations in the TripRebel portal

Proceedings of the 15th International Conference on Knowledge Technologies and Data-driven Business, i-know 2015, ACM, Graz, Austria, 2015

In this paper, we present a scalable hotel recommender system for TripRebel, a new online booking portal. On the basis of the open-source enterprise search platform Apache Solr, we developed a system architecture with Web-based services to interact with indexed data at large scale as well as to provide hotel recommendations using various state-of-the-art recommender algorithms. We demonstrate the efficiency of our system directly using the live TripRebel portal where, in its current state, hotel alternatives for a given hotel are calculated based on data gathered from the Expedia AffiliateNetwork (EAN).
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.