Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2017

Görögh Edit, Vignoli Michela, Gauch Stephan, Blümel Clemens, Kraker Peter, Hasani-Mavriqi Ilire, Luzi Daniela , Walker Mappet, Toli Eleni, Sifacaki Electra

Opening up new channels for scholarly review, dissemination, and assessment

OpenSym 2017 International Symposium on Open Collaboration, Lorraine Morgan, ACM, Galway, Ireland, 2017

Konferenz
The growing dissatisfaction with the traditional scholarly communication process and publishing practices as well as increasing usage and acceptance of ICT and Web 2.0 technologies in research have resulted in the proliferation of alternative review, publishing and bibliometric methods. The EU-funded project OpenUP addresses key aspects and challenges of the currently transforming science landscape and aspires to come up with a cohesive framework for the review-disseminate-assess phases of the research life cycle that is fit to support and promote open science. The objective of this paper is to present first results and conclusions of the landscape scan and analysis of alternative peer review, altmetrics and innovative dissemination methods done during the first project year.
2017

d'Aquin Mathieu , Adamou Alessandro , Dietze Stefan , Fetahu Besnik , Gadiraju Ujwal , Hasani-Mavriqi Ilire, Holz Peter, Kümmerle Joachim, Kowald Dominik, Lex Elisabeth, Lopez Sola Susana, Mataran Ricardo, Sabol Vedran, Troullinou Pinelopi, Veas Eduardo, Veas Eduardo Enrique

AFEL: Towards Measuring Online Activities Contributions to Self-Directed Learning

7th Workshop on Awareness and Reflection in Technology Enhanced Learning (ARTEL 2017), Kravcik M., Mikroyannidis A., Pammer-Schindler V., Prilla M., CEUR-WS, Tallinn, Estonia, 2017

Konferenz
More and more learning activities take place online in a self-directed manner. Therefore, just as the idea of self-tracking activities for fitness purposes has gained momentum in the past few years, tools and methods for awareness and self-reflection on one's own online learning behavior appear as an emerging need for both formal and informal learners. Addressing this need is one of the key objectives of the AFEL (Analytics for Everyday Learning) project. In this paper, we discuss the different aspects of what needs to be put in place in order to enable awareness and self-reflection in online learning. We start by describing a scenario that guides the work done. We then investigate the theoretical, technical and support aspects that are required to enable this scenario, as well as the current state of the research in each aspect within the AFEL project. We conclude with a discussion of the ongoing plans from the project to develop learner-facing tools that enable awareness and self-reflection for online, self-directed learners. We also elucidate the need to establish further research programs on facets of self-tracking for learning that are necessarily going to emerge in the near future, especially regarding privacy and ethics.
2016

Stanisavljevic Darko, Hasani-Mavriqi Ilire, Lex Elisabeth, Strohmaier M., Helic Denis

Semantic Stability in Wikipedia

Complex Networks and their Applications, Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A., Springer International Publishing AG, Cham, Switzerland, 2016

Konferenz
In this paper we assess the semantic stability of Wikipedia by investigat-ing the dynamics of Wikipedia articles’ revisions over time. In a semantically stablesystem, articles are infrequently edited, whereas in unstable systems, article contentchanges more frequently. In other words, in a stable system, the Wikipedia com-munity has reached consensus on the majority of articles. In our work, we measuresemantic stability using the Rank Biased Overlap method. To that end, we prepro-cess Wikipedia dumps to obtain a sequence of plain-text article revisions, whereaseach revision is represented as a TF-IDF vector. To measure the similarity betweenconsequent article revisions, we calculate Rank Biased Overlap on subsequent termvectors. We evaluate our approach on 10 Wikipedia language editions includingthe five largest language editions as well as five randomly selected small languageeditions. Our experimental results reveal that even in policy driven collaborationnetworks such as Wikipedia, semantic stability can be achieved. However, there aredifferences on the velocity of the semantic stability process between small and largeWikipedia editions. Small editions exhibit faster and higher semantic stability than large ones. In particular, in large Wikipedia editions, a higher number of successiverevisions is needed in order to reach a certain semantic stability level, whereas, insmall Wikipedia editions, the number of needed successive revisions is much lowerfor the same level of semantic stability.
2015

Seitlinger Paul, Kowald Dominik, Kopeinik Simone, Hasani-Mavriqi Ilire, Ley Tobias, Lex Elisabeth

Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics

In 24rd International World Wide Web Conference, Web-Science Track, Aldo Gangemi, Stefano Leonardi and Alessandro Panconesi, ACM, Florence, 2015

Konferenz
Classic resource recommenders like Collaborative Filtering(CF) treat users as being just another entity, neglecting non-linear user-resource dynamics shaping attention and inter-pretation. In this paper, we propose a novel hybrid rec-ommendation strategy that re nes CF by capturing thesedynamics. The evaluation results reveal that our approachsubstantially improves CF and, depending on the dataset,successfully competes with a computationally much moreexpensive Matrix Factorization variant.
2015

Hasani-Mavriqi Ilire, Geigl Florian, Pujari Subhash Chandra, Lex Elisabeth, Helic Denis

Influence of Status Social on Consensus Building in Collaboration Networks

In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2015), Jian Pei, Fabrizio Silvestri and Jie Tang, ACM/IEEE, Paris, France, 2015

Konferenz
In this paper, we analyze the influence of socialstatus on opinion dynamics and consensus building in collaborationnetworks. To that end, we simulate the diffusion of opinionsin empirical collaboration networks by taking into account boththe network structure and the individual differences of peoplereflected through their social status. For our simulations, weadapt a well-known Naming Game model and extend it withthe Probabilistic Meeting Rule to account for the social statusof individuals participating in a meeting. This mechanism issufficiently flexible and allows us to model various situations incollaboration networks, such as the emergence or disappearanceof social classes. In this work, we concentrate on studyingthree well-known forms of class society: egalitarian, ranked andstratified. In particular, we are interested in the way these societyforms facilitate opinion diffusion. Our experimental findingsreveal that (i) opinion dynamics in collaboration networks isindeed affected by the individuals’ social status and (ii) thiseffect is intricate and non-obvious. In particular, although thesocial status favors consensus building, relying on it too stronglycan slow down the opinion diffusion, indicating that there is aspecific setting for each collaboration network in which socialstatus optimally benefits the consensus building process.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close