Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2016

Kopeinik Simone, Kowald Dominik, Hasani-Mavriqi Ilire, Lex Elisabeth

Improving Collaborative Filtering Using a Cognitive Model of Human Category Learning

Journal of WebScience, James Finlay, Now publishing, 2016

Journal
Classic resource recommenders like Collaborative Filteringtreat users as just another entity, thereby neglecting non-linear user-resource dynamics that shape attention and in-terpretation. SUSTAIN, as an unsupervised human cate-gory learning model, captures these dynamics. It aims tomimic a learner’s categorization behavior. In this paper, weuse three social bookmarking datasets gathered from Bib-Sonomy, CiteULike and Delicious to investigate SUSTAINas a user modeling approach to re-rank and enrich Collab-orative Filtering following a hybrid recommender strategy.Evaluations against baseline algorithms in terms of recom-mender accuracy and computational complexity reveal en-couraging results. Our approach substantially improves Col-laborative Filtering and, depending on the dataset, success-fully competes with a computationally much more expen-sive Matrix Factorization variant. In a further step, we ex-plore SUSTAIN’s dynamics in our specific learning task andshow that both memorization of a user’s history and clus-tering, contribute to the algorithm’s performance. Finally,we observe that the users’ attentional foci determined bySUSTAIN correlate with the users’ level of curiosity, iden-tified by the SPEAR algorithm. Overall, the results ofour study show that SUSTAIN can be used to efficientlymodel attention-interpretation dynamics of users and canhelp improve Collaborative Filtering for resource recommen-dations.
2016

Stanisavljevic Darko, Hasani-Mavriqi Ilire, Lex Elisabeth, Strohmaier M., Helic Denis

Semantic Stability in Wikipedia

Complex Networks and their Applications, Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A., Springer International Publishing AG, Cham, Switzerland, 2016

Konferenz
In this paper we assess the semantic stability of Wikipedia by investigat-ing the dynamics of Wikipedia articles’ revisions over time. In a semantically stablesystem, articles are infrequently edited, whereas in unstable systems, article contentchanges more frequently. In other words, in a stable system, the Wikipedia com-munity has reached consensus on the majority of articles. In our work, we measuresemantic stability using the Rank Biased Overlap method. To that end, we prepro-cess Wikipedia dumps to obtain a sequence of plain-text article revisions, whereaseach revision is represented as a TF-IDF vector. To measure the similarity betweenconsequent article revisions, we calculate Rank Biased Overlap on subsequent termvectors. We evaluate our approach on 10 Wikipedia language editions includingthe five largest language editions as well as five randomly selected small languageeditions. Our experimental results reveal that even in policy driven collaborationnetworks such as Wikipedia, semantic stability can be achieved. However, there aredifferences on the velocity of the semantic stability process between small and largeWikipedia editions. Small editions exhibit faster and higher semantic stability than large ones. In particular, in large Wikipedia editions, a higher number of successiverevisions is needed in order to reach a certain semantic stability level, whereas, insmall Wikipedia editions, the number of needed successive revisions is much lowerfor the same level of semantic stability.
2016

Hasani-Mavriqi Ilire, Geigl Florian, Pujari Suhbash Chandra, Lex Elisabeth, Helic Denis

The Influence of Social Status and Network Structure on Consensus Building in Collaboration Networks

Social Network Analysis and Mining, Reda Alhajj, Springer Vienna, 2016

Journal
In this paper, we study the process of opinion dynamics and consensus building in online collaboration systems, in which users interact with each other following their common interests and their social profiles. Specifically, we are interested in how users similarity and their social status in the community, as well as the interplay of those two factors influence the process of consensus dynamics. For our study, we simulate the diffusion of opinions in collaboration systems using the well-known Naming Game model, which we extend by incorporating an interaction mechanism based on user similarity and user social status. We conduct our experiments on collaborative datasets extracted from the Web. Our findings reveal that when users are guided by their similarity to other users, the process of consensus building in online collaboration systems is delayed. A suitable increase of influence of user social status on their actions can in turn facilitate this process. In summary, our results suggest that achieving an optimal consensus building process in collaboration systems requires an appropriate balance between those two factors.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close