Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2017

Rexha Andi, Kern Roman, Ziak Hermann, Dragoni Mauro

A semantic federated search engine for domain-specific document retrieval

SAC '17 Proceedings of the Symposium on Applied Computing, Sung Y. Shin, Dongwan Shin, Maria Lencastre, ACM, Marrakech, Morocco, 2017

Konferenz
Retrieval of domain-specific documents became attractive for theSemantic Web community due to the possibility of integrating classicInformation Retrieval (IR) techniques with semantic knowledge.Unfortunately, the gap between the construction of a full semanticsearch engine and the possibility of exploiting a repository ofontologies covering all possible domains is far from being filled.Recent solutions focused on the aggregation of different domain-specificrepositories managed by third-parties. In this paper, wepresent a semantic federated search engine developed in the contextof the EEXCESS EU project. Through the developed platform,users are able to perform federated queries over repositories in atransparent way, i.e. without knowing how their original queries aretransformed before being actually submitted. The platform implementsa facility for plugging new repositories and for creating, withthe support of general purpose knowledge bases, knowledge graphsdescribing the content of each connected repository. Such knowledgegraphs are then exploited for enriching queries performed byusers.
2017

Dragoni Mauro, Federici Marco, Rexha Andi

Extracting Aspects From User-generated Content For Supporting Opinion Mining Systems

Journal of Intelligent Information Systems, Kerschberg; Z. Ras, Springer, 2017

Journal
One of the most important opinion mining research directions falls in the extraction ofpolarities referring to specific entities (aspects) contained in the analyzed texts. The detectionof such aspects may be very critical especially when documents come from unknowndomains. Indeed, while in some contexts it is possible to train domain-specificmodels for improving the effectiveness of aspects extraction algorithms, in others themost suitable solution is to apply unsupervised techniques by making such algorithmsdomain-independent. Moreover, an emerging need is to exploit the results of aspectbasedanalysis for triggering actions based on these data. This led to the necessityof providing solutions supporting both an effective analysis of user-generated contentand an efficient and intuitive way of visualizing collected data. In this work, we implementedan opinion monitoring service implementing (i) a set of unsupervised strategiesfor aspect-based opinion mining together with (ii) a monitoring tool supporting usersin visualizing analyzed data. The aspect extraction strategies are based on the use of semanticresources for performing the extraction of aspects from texts. The effectivenessof the platform has been tested on benchmarks provided by the SemEval campaign and have been compared with the results obtained by domain-adapted techniques.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close