Wissenschaftliche Arbeiten

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Abschlussarbeiten

2011

Beham Günter

User Model Serivces for Adaptive Work-integrated Learning i

Master

Master
Die zentrale Herausforderung für die Entwicklung von Software für arbeitsintegriertes Lernen (work-integrated learning, WIL) ist es, Lerninhalte bereitzustellen, die an die situativen Gegebenheiten und das Vorwissen der NutzerInnen angepasst sind (adaptive Systeme). Um Adaptivität zu realisieren ist ein Benutzermodell (User Model) erforderlich, das kontinuierlich an den Lernfortschritt angepasst wird. Im Gegensatz zum Schul- und Universitätskontext existieren kaum adaptive Systeme zur Unterstützung von WIL. Ziel meiner Masterarbeit war es, ein WIL User Model, WIL User Model Services und eine Software-Architektur zur Unterstützung von WIL zu entwickeln. Das WIL System sollte sich an die Arbeitsaufgabe und das Vorwissen der BenutzerInnen anpassen, reale Arbeitsdokumente als Lerninhalte benützen und in die Arbeitsumgebung der Benutzer integriert sein. Anforderungen für das System wurden einerseits aus der Theorie zu WIL und andererseits aus existierenden Use Cases abgeleitet. Die Anforderungsanalyse ergab, dass drei Arten von Funktionalität zentral für die Unterstützung von WIL erscheinen: Non-invasive Wissensdiagnose, Empfehlungen von Inhalten und Empfehlungen von ExpertInnen. In meiner Mas- terarbeit wurden diese Funktionalitäten über verschiedene Arten von User Model Services konzeptualisiert (Logging, Production, Inference und Control Services), die gemeinsam die WIL User Model Services (WIL UMS) bilden. Die WIL UMS wur- den prototypisch im adaptiven WIL System APOSDLE implementiert. APOSDLE’s Benutzermodell wird über Log Daten (“Knowledge Indicating Events”) automatisch aktualisiert. Ausgehend vom Benutzermodell empfiehlt APOSDLE reale Arbeitsdo- kumente und ExpertInnen. APOSDLE und die WIL UMS wurden als intelligente Lösung zur Unterstützung von WIL in vier Unternehmen installiert, und sind in die Arbeitsumgebung der BenutzerInnen integriert.  
2011

Kompacher Georg

Identifikation von relevanten Konzepten in einem Ontologie-basierten Kontext-Modell i

Master

Master
Die Handhabung einer riesigen Menge an stetig steigender persönlicher Daten wird immer schwieriger. Durch unauffällige Überwachung des Benutzers kann der derzeitige Benutzerkontext erfasst werden und dem Wissensarbeiter dadurch bessere Unterstützung ermöglicht werden. Das Ziel dieser Masterarbeit ist es, für eine aktuelle Aufgabe relevante Entitäten in einem Benutzer-Interaktions-Kontext-Modell zu ermitteln. Ein Aktivierungsausbreitungsansatz wird auf die Graphenstruktur eines Benutzer-Interaktions-Kontext-Modells angewandt um, basierend auf dem derzeitigen Benutzerkontext, relevante Aufgaben des selben und eines anderen Benutzers zu finden. Das Benutzer-Interaktions-Kontext-Modell, die entstandene Ontologie and die automatischen Populationsmechanismen wurden von Andreas Rath als Teil seiner Forschungstätigkeit verwirklicht. Die Ziele dieser Masterarbeit sind (a) die Identifikation von relevanten Aufgaben in einem Benutzer-Interaktions-Kontext-Modell, (b) die Ermittlung von Konzepten und Eigenschaften der Benutzer-Interaktions-Kontext-Ontologie für den Aktivierungsausbreitungsansatz, (c) die Evaluierung der erforderlichen Anzahl an Iterationen sowie (d) die Evaluierung einer gute Ergebnisse liefernden Kombination von Aktivierungsabbau, Schwellwert und Relationsgewichtung für den Aktivierungsausbreitungsansatz und (e) die Visualisierung des Aktivierungsausbreitungsgraphen basierend auf dem Benutzer-Interaktions-Kontext-Graphen.  
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close