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ABSTRACT
Classic resource recommenders like Collaborative Filtering
treat users as just another entity, thereby neglecting non-
linear user-resource dynamics that shape attention and in-
terpretation. SUSTAIN, as an unsupervised human cate-
gory learning model, captures these dynamics. It aims to
mimic a learner’s categorization behavior. In this paper, we
use three social bookmarking datasets gathered from Bib-
Sonomy, CiteULike and Delicious to investigate SUSTAIN
as a user modeling approach to re-rank and enrich Collab-
orative Filtering following a hybrid recommender strategy.
Evaluations against baseline algorithms in terms of recom-
mender accuracy and computational complexity reveal en-
couraging results. Our approach substantially improves Col-
laborative Filtering and, depending on the dataset, success-
fully competes with a computationally much more expen-
sive Matrix Factorization variant. In a further step, we ex-
plore SUSTAIN’s dynamics in our specific learning task and
show that both memorization of a user’s history and clus-
tering, contribute to the algorithm’s performance. Finally,
we observe that the users’ attentional foci determined by
SUSTAIN correlate with the users’ level of curiosity, iden-
tified by the SPEAR algorithm. Overall, the results of
our study show that SUSTAIN can be used to efficiently
model attention-interpretation dynamics of users and can
help improve Collaborative Filtering for resource recommen-
dations.
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1. INTRODUCTION
The Web features a huge amount of data and resources

that are potentially relevant and interesting for a user. How-
ever, users are often unable to evaluate all available alterna-
tives due to the cognitive limitations of their minds. Thus,
recommender systems have been proved as being a valid ap-
proach for Web users for coping with information overload
[21] – with Collaborative Filtering (CF) being one of the
most successful methods [3]. CF recommends resources to
a user based on the digital traces she leaves behind on the
Web, i.e., her interactions with resources and the interac-
tions of other, similar users.

Recent advances in the interdisciplinary field of Web Sci-
ence provide even more comprehensive digital traces of so-
cial actions and interactions that can be exploited in recom-
mender systems’ research. At least implicitly, research on
recommender systems has implemented interesting assump-
tions about structures and dynamics in Social Information
Systems (SIS), such as MovieLens, LastFM or BibSonomy.
For instance, by computing matrices or high-dimensional ar-
rays, approaches like CF represent and process SIS as net-
works or graphs, which relate entities of different quality
(e.g., users, resources, time, ratings, tags, etc.) to each
other. That way, a compositional view is taken that is remi-
niscent of a material-semiotic perspective (e.g., [29]), assum-
ing that we gain a deeper understanding of the intention or
function of an entity, if we consider the associations it has
established with other entities. In other words, “everything
in the social and natural worlds [is regarded] as a continu-
ously generated effect of the webs of relations within which
they are located” ([29], p. 142).

Problem. If we look at the machinery underlying CF, it
becomes clear that structurally the algorithm treats users as
just another entity, such as a tag or a resource. We regard
this indifference as a structuralist simplification abstracting
from individuals’ complexity. The structuralist stance also
runs the risk of neglecting nonlinear, dynamic processes go-
ing on between different entities, such as a user’s intentional
state (e.g., attentional focus, interpretations, decision mak-
ing) and resources (e.g., articles) consumed in the past.



Approach and methods. The main goal of this work,
and also of our previous work [41] is to take a closer look
at these dynamics and to capture them by means of an ap-
propriate model. Each user develops subjectivity, an id-
iosyncratic way of perceiving and interpreting things in the
world, which manifests itself in particular preferences. Par-
tially, this development evolves through a user’s trajectory
in the SIS (e.g., [14]). Every resource that we decide to col-
lect corresponds to a learning episode: Depending on the
resource’s features, the episode causes a shift in attention,
particularly in attentional tunings for certain features as well
as a shift in mental categories (conceptual clusters), which
influences our decision-making (e.g., [33]). The shape that
mental patterns (e.g., attentional tunings and conceptual
clusters) acquire, is governed by both the environment and
the current mental state. The acquired pattern in turn ori-
ents the user towards particular resources and hence, closes
the loop of the environment-user dynamics.

In order to capture these dynamics, we investigate the
potential of SUSTAIN [33], a particularly flexible cognitive
model of human category learning. To this end, we slightly
adapt the approach as described in Section 3.2 to train a
model using a user’s history (collected resources in a train-
ing set). The resulting user model is then applied to predict
new resources from a preselected candidate set. For our em-
pirical studies, we utilize three social bookmarking datasets
from BibSonomy, CiteULike and Delicious. We chose social
tagging systems for our study because their datasets are
freely-available for scientific purposes and because tagging
data can be utilized to derive semantic topics for resources
[16] by means of LDA (see Section 3.3).

Research questions and findings. SUSTAIN, a learn-
ing model built upon theories of human category learning,
can differentiate between users by means of attention and
interpretation dynamics demonstrated towards observed as-
pects. We further talk about attentional and conceptual
processes. Attentional processes describe the cognitive op-
eration that decides which environmental aspects a user at-
tends to (focuses on) and therefore determines what a user
learns, while conceptual processes refer to the development
and incremental refinement of a user’s specific model of con-
cepts and its interpretation. Our hypothesis is that these
dynamics can be exploited to anticipate user-specific prefer-
ences and decisions on resource engagement. In this work,
we therefore investigate a resource recommender that draws
on SUSTAIN to model a user’s traces (e.g., items a user
has collected in the past) with an unsupervised clustering
approach. The model incorporates individuals’ attentional
foci and their semantic clusters. Our main hypothesis is that
given sufficient traces per user for training, a recommender
equipped with SUSTAIN can be applied to simulate a user’s
decision making with respect to resource engagement, lead-
ing to improved recommender accuracy. This is based on
the assumption that learning happens in categories and new
resource items are likely to relate to previously visited cate-
gories. Thus, the first research question of our work is briefly
stated as:

RQ1: Do resource recommendations become more accu-
rate if a set of resources identified by CF is processed by
SUSTAIN to simulate user-specific attentional and concep-
tual processes?

To tackle this research question, we first adapted and im-
plemented the unsupervised learning paradigm of SUSTAIN
to fit our learning task. In a second step, we combined
our approach with user-based Collaborative Filtering (CFU )
to create our hybrid approach SUSTAIN+CFU . Then, we
compared this algorithm to SUSTAIN alone, CFU as well
as other state-of-the-art approaches like resource-based CF
(CFR) and an effective Matrix Factorization variant (WRMF)
[18]. Our results reveal that SUSTAIN+CFU outperforms
SUSTAIN, CFU and CFR in our setting. Furthermore, WRMF
only reaches higher accuracy estimates in one of the datasets,
which indicates that our approach can also compete with
this much more computationally expensive method. This
leads us to our next research question:

RQ2: Which aspects of the SUSTAIN algorithm contribute
to the improved performance?

To address this question, we carried out a parameter study,
in which a set of different parameters are simulated and ob-
served. The resulting plots indicate the effect of recency
that can be inferred from the optimal learning rate and the
impact of the dynamic learning approach, i.e., how many
semantic clusters work best for a specific dataset?

To validate the computational efficiency of SUSTAIN+CFU
compared to state-of-the-art methods such as WRMF, our
third research question is:

RQ3: To what extent can resource recommendations be
calculated in a computationally efficient way using SUSTAIN+
CFU in comparison to other state-of-the-art algorithms like
matrix factorization?

Addressing this research question, we analyzed the com-
putational complexity of the approaches discussed when study-
ing RQ1. We found that the most computationally ex-
pensive step of SUSTAIN+CFU is the calculation of the
resource-specific topics. Since our datasets do not contain
topic information, Latent Dirichlet Allocation (LDA) was
applied to extract 500 topics describing each resource. Be-
cause this step can be calculated offline, the complexity of
our approach is much lower than that of WRMF.

With respect to evaluation, we tried to take a broader
perspective on our hybrid approach by additionally investi-
gating SUSTAIN-specific attentional entropy values. More
specifically, we investigated the correlation between the at-
tentional entropy values and a user’s curiosity, since, as de-
scribed by Loewenstein [30], when attention becomes focused
on a gap in one’s knowledge, curiosity arises1.

The well known SPEAR algorithm [36, 45] can be used
to calculate expertise scores for users in a network based on
their resource interaction patterns. Using these expertise
scores, it is possible to determine discoverers among users,
i.e., curious users who tend to be faster at finding resources
of high quality. With this in mind, we raise the last research
question of this work:

RQ4: Do users’ attentional foci, determined by SUSTAIN,
correlate with users’ expertise scores identified by the SPEAR
algorithm?

In order to address this research question, we correlated
SUSTAIN attentional entropy values with SPEAR’s exper-
tise scores on our three datasets. We observed Spearman
rank correlation values between .55 for Delicious and .83 for
BibSonomy, which indicates that users with a high curiosity
value determined by SUSTAIN also receive a high expertise

1http://ideas.time.com/2013/04/15/how-to-stimulate-
curiosity



score determined by SPEAR and thus, can be identified as
discoverers.

Structure. The rest of this work is organized as follows:
In Section 2, we discuss related work that has inspired our
hybrid recommendation approach. A detailed description of
the algorithm and its application can be found in Section 3.
In Section 4, we first describe the methodology applied to
compare the performance of our SUSTAIN+CFU approach
to several baseline algorithms. Second, the setup of a pa-
rameter investigation study is given and third, details on the
algorithms’ computational efficiencies are provided. Finally,
we report how we used the SPEAR algorithm’s curiosity
values to compare with user-specific attentional preferences
(tunings). Results addressing our four research questions
are presented and discussed in Section 5. Conclusions and
opportunities for future work are given in Section 6.

2. RELATED WORK
At the moment, we identify three main research directions

that are related to our work.

Collaborative filtering extensions. In [27], the Col-
laborative Item Ranking Using Tag and Time Information
(CIRTT) approach is introduced, which combines user-based
and item-based CF with the information about tag frequency
and recency through the base-level learning (BLL) equation
from human memory theory. An extensive survey on CF was
recently conducted by [43]. In this survey, the authors clas-
sify CF approaches based on the type of information that is
processed and the type of paradigm applied. Furthermore,
CF extensions are defined as approaches that, enrich clas-
sic CF algorithms with valuable additional information on
users and resources. Analogous categorization of CF stud-
ies is performed in [2] as well. Additionally, these studies
have identified challenges that are crucial to future research
on CF. In this context, authors state the fact that there is
a lack of studies which address issues on recommender sys-
tems from the psychological perspective. To the best of our
knowledge, there have been no remarkable endeavors which
combine the implementation of a dynamic and connectionist
model of human cognition, such as SUSTAIN, with existing
CF algorithms. The work presented in [44] is related to
our study due to its focus on deriving semantic topics for re-
sources. The approach presented in [44] combines collabora-
tive filtering and probabilistic topic modeling to recommend
existing and newly published scientific articles to researchers
in an online scientific community. Similarly, the author in
[34] introduces the User Rating Profile Model for rating-
based collaborative filtering, which combines a multinomial
mixture model, the aspect model and LDA.

Recommender systems and user modeling. The work
by [11] distinguishes between recommender systems that
provide non-personalized and personalized recommendations.
While non-personalized recommender systems are not based
on user models, personalized ones choose resources by taking
into account the user profile (e.g., previous user interactions
or user preferences). Various techniques have been proposed
to design user models for resource recommendations [20, 9].
Some approaches aim to provide dynamically adapted per-
sonalized recommendations to users [12].

Another related field is human decision making in recom-
mender systems [8]. For example, the work presented in [10]

systematically analyzes recommender systems as decision
support systems based on the nature of users’ goals and the
dynamic characteristics of the resource space such as e.g.,
availability of resources. Our recent work [25] shows that
the type of folksonomy in a social tagging systems also de-
termines the efficacy of a tag recommender approach. There
is, however, still a lack of research focusing on investigating
user decision processes in detail, considering insights from
psychology. With this work, we contribute to this sparse
area of research.

Long tail recommendations and user serendipity. In
the recommender systems community, long tail recommen-
dations have also gained in importance. Essentially, the long
tail refers to resources of low popularity [43]. However, en-
hancing recommendation results with long tail resources can
impact user satisfaction. In this context, current research
[43, 46, 42] investigates whether additional revenue can be
generated by the recommender systems from long tail re-
sources. Various solutions have been proposed to overcome
the problem of over-specialization and concentration-bias in
recommender systems [1, 28]. The problem of concentration-
bias becomes evident since traditional CF algorithms rec-
ommend resources based on the users’ previous history of
activities. Hence, resources with the most occurrences in
this history are typically repeatedly recommended to users,
causing a narrowing of choices by excluding other resources
which might be of interest. Additionally, recommending
resources based on user’s previous activities or preferences
yields to over-specialization of recommendations. However,
the balance between information overload and facilitating
users to explore new horizons by recommending serendipi-
tous choices is not tackled within the scope of this work.

3. APPROACH
In this section, we first introduce the main principles of

the SUSTAIN model, followed by all steps of our approach
and its implementation. This includes a delineation of how
we designed a hybrid recommender based on SUSTAIN and
how we derived semantic topics by means of LDA. Finally,
we describe how we identified candidate resources using CF.
Notations used throughout this paper are summarized in
Table 1.

3.1 SUSTAIN
SUSTAIN (Supervised and Unsupervised STratified Adap-

tive Incremental Network) is a flexible model of human cat-
egory learning that is introduced and thoroughly discussed
in [33]. By means of a clustering approach, it represents the
way humans build up and extend their category representa-
tions when learning by means of examples. The key points of
the model are flexibility and simplicity, which are supported
by the fact that the number of hidden units (i.e., clusters)
is not chosen in advance, but is discovered incrementally
through the learning trajectory. Initially, the model starts
as very simple with one cluster representing the first ex-
ample, and then grows with the complexity of the problem
space. The model only recruits a new cluster if a new exam-
ple cannot be accommodated in one of the already existing
clusters.

SUSTAIN is described as a three layer model with (1) the
input layer that encodes the input stimulus, (2) the inter-
mediate layer, a cluster set representing learned categories



Symbol Description
u user
v neighbor in the sense of CF
t tag
r resource
c candidate resource
P set of posts / bookmarks
U set of users
Vu,r neighbors of user u that bookmarked r
T set of tags
R set of resources
Ru resources of user u
Rv resources of neighbor v
Su similar resources of u based on topics
Sr similar resources of resource r
Cu resource candidate set of user u
Z number of topics (i.e., n dimensions)
k number of neighbors (CF)
k number of Matrix Factorization factors
l number of iterations
I topic vector of a resource
Iact activated topics of I (i.e., with value 1)
Hj cluster j in a user’s clusters
Hm most activated (winning) cluster
Hact
j activation value of cluster j

Hact
m activation value of winning cluster m

µij distance to cluster j at dimension i
λi attentional tuning (weight) of dimension i
r attentional focus parameter
η learning rate
τ threshold for the creation of new clusters
sim(u, v) similarity between users u and v
α weighting parameter of SUSTAIN
CFU (u, r) Collaborative Filtering value for u and r
RecRes(u) set of recommended resources for user u

Table 1: Overview of notations used in this paper.

and (3) the output layer that predicts which category an
input stimulus belongs to. Depending on the requirements,
the model can support either unsupervised or supervised
learning processes, where the two approaches mainly dif-
fer through their means of cluster recruitment. Supervised
learning requires an external feedback mechanism that veri-
fies the correct categorization of new examples. A false cate-
gorization is interpreted as an error and leads to a new clus-
ter recruitment. Unsupervised learning on the other hand,
does not require an explicit feedback mechanism but instead
uses the similarity of the input stimulus to the cluster set.
In other words, if a given input stimulus’ similarity to the
existing clusters is below a threshold value τ , it is assumed
that the input cannot be sufficiently represented in the ex-
isting cluster set. This leads to a new cluster representing
the input stimulus. In order to explain the input stimulus,
the existing clusters compete amongst each other. There-
fore, for each cluster an activation value is calculated that
reflects the similarity to the input stimulus. The highest ac-
tivated cluster wins and will, if its activation is greater than
τ , predict the input stimulus’ category.

In line with the requirements of our learning task, this
work focuses on the unsupervised learning process, cluster-
ing with interconnected input, hidden and output units.

To adjust to the peculiarities of different data sets, the
approach additionally offers parameters such as the learning
rate η and the attentional focus r (see also Table 2). The

learning rate η determines the influence of an input stim-
uli on its accommodating cluster and consequently defines
how fast the algorithm learns new patterns. The attentional
focus r is a constant that represents a person’s capability
to focus on information aspects or features relevant to a
given task, while suppressing minor features of that particu-
lar task. To capture a user’s specific preferences for certain
aspects, the attentional focus r is enhanced by attentional
tunings (i.e., tunings of the attentional focus on input fea-
tures that evolve with encounters with new exemplars).

In this work, we train a slightly adapted SUSTAIN model
using a user’s history (i.e., collected resources in a training
set). The resulting user model is applied to predict new re-
sources from a preselected candidate set. During training
and testing, SUSTAIN maps the input features (e.g., top-
ics identified by Latent Dirichlet Allocation) of a resource
to a set of dimensions at the input layer. The activation of
each dimension is controlled by the attentional tuning that
is learned in the course of the training phase and reflects
the importance of the corresponding feature dimension for
a specific user. The hidden layer consists of a set of clus-
ters each representing similar resources encountered in the
past. Hence, one cluster corresponds to a user-specific field
of interest. In our test phase, the set and the structure of
recruited clusters are treated as fixed measurements that no
longer change. The classification decision (i.e., the decision
to choose or not choose a given resource) is a function of the
activation of the most activated (winning) cluster.

3.2 A Hybrid Resource Recommender Based
on SUSTAIN

First, to describe our Web resources using categories, we
derive 500 LDA topics from tags assigned to resources of
our datasets [16], as described in Section 3.3. The LDA
topics of our resources represent the n input features of our
model. Then, on the basis of the resources a user has book-
marked in the past (i.e., the training set of a user), each
user’s personal attentional tunings and cluster representa-
tions are created in the training phase and included in our
user model. Subsequently, our user model based prediction
algorithm is evaluated in the testing phase.

To better fit our learning task’s specific needs, we slightly
adapt SUSTAIN’s unsupervised clustering approach; and
our adaptions impact specifically the training and testing
phase. More precisely, we make an adjustment to the very
high number of 500 input dimensions by limiting the learn-
ing focus to the topics activated by the current learning re-
source (further referred to as Iact). This led to improved
performance results, which explain the difference to results
reported in our previous work [41].

Training. Following an unsupervised learning procedure,
we start simple, with one cluster and expand the number of
clusters if necessary. Please note that all SUSTAIN-specific
parameter settings are adopted from [33] (see Table 2).

For each resource in the training set of a user u, we start
by calculating the distance µij to cluster j at dimension i as
described in equation (1):

µij =
∣∣Iposi −Hposi

j

∣∣ (1)

where I is the n-dimensional input vector, which represents
the topics of this resource, and vector Hj is cluster j’s posi-
tion in the n-dimensional feature space, which holds a value



Function Symbol Value
Attentional focus r 9.998
Learning rate η .096
Threshold τ .5

Table 2: SUSTAIN’s best fitting parameters for un-
supervised learning as suggested in [33].

for each topic and is initially set to ~0. In this setup, input
and cluster vectors represent 500 topics of which only a few
are activated by each resource. Adjusting to this setting, we
set the distance µij to 1 (maximal distance) for every topic
i that is not activated in the input vector (Iposi = 0) and
therefore i /∈ Iact for Iact = {i ∈ I ∧ i = 1}. In the next
step, we consider only activated topics i ∈ Iact to calculate
the activation value Hact

j of the jth cluster by equation (2):

Hact
j =

∑
i∈Iact

(λi)
re−λiµij∑

i∈Iact
(λi)r

(2)

where λi represents the attentional tuning (weight) of di-
mension i and acts as a multiplier on i in calculating the
activation. Initially, vector λ is set to ~1 and evolves dur-
ing the training phase according to equation (3) calculated
at the end of every training iteration (i.e., after including a
resource). r, which is set to 9.998, is an attentional focus
parameter that accentuates the effect of λi: if r = 0. All
dimensions are weighted equally.

If the activation value Hact
m of the most activated (i.e.,

winning) cluster is below a given threshold τ = .5, a new
cluster is created, representing the topics of the currently
processed resource. At the end of an iteration, the tunings
of vector λ are updated given by equation (3):

∆λi = ηe−λiµim(1− λiµim) (3)

where j indexes the winning cluster and the learning rate
η is set to .096. In a final step, the position vector of the
winning cluster, which holds a value for each of the n topics,
is recalculated as described by equation (4):

∆Hposi
m = η(Iposi −Hposi

m ) (4)

The training phase is completed when steps (1) to (4) are
subsequently processed for every resource in a user’s training
set. For each user, this results in a particular vector of
attentional tunings λ and a set of j cluster vectors Hj . More
formally, the training procedure of our approach is given by
Algorithm 1.

Testing. As described in Section 3.3, we determine the top
100 resources identified by CFU as a candidate set Cu of
potentially relevant resources for the target user u. Then,
for each candidate c in Cu, we calculate Hact

m by applying
equations (1) and (2). In order to compare the values result-
ing from SUSTAIN and CFu, we normalize them such that∑
c∈Cu

Hact
m (c) = 1 and

∑
c∈Cu

CFU (u, c) = 1 holds. This

leads to the normalized values Hact
m (c) and CFU (u, c) that

are finally put together as shown in equation (5) in order to
determine the set of k recommended resources RecRes(u)
for user u:

RecRes(u) =
k

arg max
c∈Cu

(α Hact
m (c)︸ ︷︷ ︸

SUSTAIN

+(1− α)CFU (u, c)

︸ ︷︷ ︸
SUSTAIN+CFU

) (5)

Algorithm 1 Training procedure per user

1: Initialize a set of cluster H = ∅
2: Initialize a vector λ with λi = 1
3: for every resource topic vector I do
4: for every cluster Hj ∈ H do
5: Calculate µj
6: Calculate Hact

j

7: end for
8: Identify Hm with max Hact

m

9: if Hact
m <= τ then

10: Hm ← I
11: H ← H ∪ {Hm}
12: end if
13: λ← λ+ ∆λ
14: Hm ← Hm + ∆Hm
15: end for
16: return λ
17: return H

where α can be used to inversely weigh the two components
of our hybrid approach. For now, we set α to .5 in order to
equally weight SUSTAIN and CFU .

3.3 Technical Preliminaries
Our approach requires two steps of data preprocessing.

First, the extraction of semantic topics to describe resources
and second, the identification of candidate resources using
CF. Candidate resources describe the user-specific set of
Web resources that the algorithm considers recommending
to a user.

Deriving semantic topics for resources. In order to
derive semantic topics for the resources [16] of our social
tagging datasets (see Section 4.1.1), we use Latent Dirichlet
Allocation (LDA) [5]. Categories or topics describing Web
resources form the basis of our approach. Since our datasets
do not explicitly contain such properties for resources, we
chose LDA to simulate an external categorization.

LDA is a probability model that helps find latent semantic
topics for documents (i.e., resources). In the case of social
tagging data, the model takes assigned tags of all resources
as input and returns an identified topic distribution for each
resource. We implemented LDA using the Java framework
Mallet2 with Gibbs sampling and l = 2000 iterations as sug-
gested in the framework’s documentation and related work
(e.g., [26]). In order to reduce noise and to meaningfully
limit the number of assigned topics, we set the number of
latent topics Z to 500 (see also [22]) and only consider top-
ics for a resource that show a minimum probability value of
.01. The Latent Dirichlet Allocation can be formalized as
follows:

P (ti|d) =

Z∑
j=1

(P (ti|zi = j)P (zi = j|d)) (6)

Here P (ti|d) is the probability of the ith word for a document
d and P (ti|zi = j) is the probability of ti within the topic
zi. P (zi = j|d) is the probability of using a word from topic
zi in the document.

Identifying candidate resources. Within the scope of
this paper, the term candidate resources describes the set of

2http://mallet.cs.umass.edu/



resources that is considered when calculating most suitable
items for a recommendation. To evaluate our approach, we
use User-based Collaborative Filtering (CFU ) [40] to iden-
tify 100 candidate resources per user. CFU typically con-
sists of two steps: first, the most similar users (the k nearest
neighbors) for a target user are identified using a specific
similarity measure. Second, resources of these neighbors are
recommended that are new to the target user. This proce-
dure is based on the idea that if two users had a similar taste
in the past, they will probably share the same taste in the
future and thus, will like the same resources [40]. We calcu-
late the user similarities based on the binary user-resource
matrix and the cosine-similarity measure (see [47]). In ad-
dition, we set the neighborhood size k to 20, as is suggested
for CFU in social tagging systems [15].

More formally, the prediction value CFU (u, i) for a target
user u and a resource r is given by equation (7):

CFU (u, r) =
∑
v∈Vu

sim(u, v) (7)

where Vu,r is the set of most similar users of u that have
bookmarked r. sim(u, v) is the cosine similarity value be-
tween u and v.

Source code. Our approach as well as the baseline algo-
rithms described in Section 4.1.4 (except for WRFM) and
the evaluation method described in Section 4.1.2 are imple-
mented in Java within our TagRec recommender benchmark-
ing framework [23], which is freely available via GitHub3.

4. EXPERIMENTAL SETUP
This section describes the methodology we selected to

evaluate SUSTAIN based on recommender performance met-
rics and the SPEAR algorithm. It is structured in accor-
dance with our four research questions.

4.1 Model Validation Based on Recommenda-
tion Accuracy (RQ1)

In this section, we describe datasets, method, metrics
and baseline algorithms used in our recommender evalua-
tion study.

4.1.1 Datasets
We used the social bookmark and publication sharing sys-

tem BibSonomy4 (2013-07-01), the citation sharing system
CiteULike5 (2013-03-10) and the social bookmarking sys-
tem Delicious6 (2011-05-01) to test our approach in three
different settings that vary in their dataset sizes. To reduce
computational effort, we randomly selected 20% of the Ci-
teULike user profiles [15] (the other datasets were processed
in full size). We did not use a p-core pruning approach to
avoid a biased evaluation (see [24]) but excluded all posts
assigned to unique resources, i.e., resources that have only
been bookmarked once (see [38]). The statistics of the full
datasets, dataset samples we used (i.e., after the exclusion
of posts assigned to unique resources), and training and test
sets (see next section) are shown in Table 3.

3https://github.com/learning-layers/TagRec/
4http://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
5http://www.citeulike.org/faq/data.adp
6http://files.grouplens.org/datasets/hetrec2011/
hetrec2011-delicious-2k.zip

Dataset Type |P | |U | |R| |T | |P |/|U |
Bibsonomy Full 400,983 5,488 346,444 103,503 73

Sample 82,539 2,437 28,000 30,919 34
Training 66,872 2,437 27,157 27171 27
Test 15,667 839 11,762 12,034 19

CiteULike Full 753,139 16,645 690,126 238,109 45
Sample 105,333 7,182 42,320 46,060 15
Training 86,698 7,182 40,005 41,119 12
Test 18,635 2,466 14,272 16,332 8

Delicious Full 104,799 1,867 69,223 40,897 56
Sample 59,651 1,819 24,075 23,984 33
Training 48,440 1,819 23,411 22,095 27
Test 11,211 1,561 8,984 10,379 7

Table 3: Properties of the full datasets as well as the
used dataset samples (including training and test set
statistics) for BibSonomy, CiteULike and Delicious.
Here, |P | is the number of posts, |U | is the number
of users, |R| is the number of resources and |T | is the
number of tags.
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Figure 1: Resource statistics of the training datasets
for BibSonomy, CiteULike and Delicious illustrating
the number of resources users’ have engaged with.

4.1.2 Evaluation Protocol
In order to evaluate our algorithm and to follow common

practice in recommender systems research (e.g., [24, 19, 47]),
we split our datasets into training and test sets. There-
fore, we followed the method described in [27] to retain the
chronological order of the posts. Specifically, we used the
20% most recent posts of each user for testing and the rest
for training the algorithms. The statistics of the training
and test sets used can be found in Table 3. This evaluation
protocol is in line with real-world scenarios, where user in-
teractions in the past are used to try and predict future user
interactions [6].

4.1.3 Evaluation Metrics
To finally determine the performance of our approach as

well as of the baseline methods, we compared the top 20
recommended resources determined by each algorithm for a
user with the relevant resources in the test set using a vari-
ety of well-known evaluation metrics [37, 17] in recommender
systems research. In particular, we took into account Nor-
malized Discounted Cumulative Gain (nDCG@20), Mean
Average Precision (MAP@20), Recall (R@20) and Precision



(P@20). Moreover, we show the performance of the al-
gorithms for different numbers of recommended resources
(k = 1− 20) by means of Precision/Recall plots.

4.1.4 Baseline Algorithms
We selected a set of well-known resource recommender

baseline algorithms in order to determine the performance
of our novel approach in relation to these approaches. Hence,
we have not only chosen algorithms that are similar to our
approach in terms of their processing steps (CFU and CBT )
but also current state-of-the-art methods for personalized
resource recommendations (CFR and WRMF) along with a
simple unpersonalized approach (MP).

Most Popular (MP). The simplest method we compare
our algorithm to, is the Most Popular (MP) approach that
ranks the resources by their total frequency in all posts [37].
In contrast to the other chosen baselines, the MP approach
is non-personalized and thus recommends the same set of
resources for any user.

User-based Collaborative Filtering (CFU). See Sec-
tion 3.3 for a detailed description of the User-based Collab-
orative Filtering (CFU ) baseline.

Resource-based Collaborative Filtering (CFR). In
contrast to CFU , Resource-based Collaborative Filtering (CFR)
(also known as Item-based CF), identifies potentially inter-
esting resources for a user by computing similarities between
resources instead of similarities between users. Hence, this
approach processes the resources a user has bookmarked in
the past in order to find similar resources to recommend [39].
As with CFU , we calculated similarities based on the binary
user-resource matrix using cosine similarity and focused on
a resource-neighborhood size k of 20 [47, 15].

Content-based Filtering using Topics (CBT ). Content-
based filtering (CB) methods recommend resources to users
by comparing the resource content and the user profile [4].
Hence, this approach does not need to calculate similarities
between users or resources (as done in CF methods) but di-
rectly tries to map resources and users. We implemented this
method in the form of Content-based Filtering using Topics
(CBT ) since topics are the only content-based features avail-
able in our social tagging datasets (see Section 4.1.1). The
similarity between the topic vector of a user and a resource
has been calculated using the cosine similarity measure.

Weighted Regularized Matrix Factorization (WRMF).
WRMF is a model-based recommender method for implicit
data (e.g., posts) based on the state-of-the-art Matrix Fac-
torization (MF) technique. MF factorizes the binary user-
resource matrix into latent user- and resource-factors, which
represent these entities, in a common space. This represen-
tation is used to map resources and users and thus, to find
resources to be recommended for a specific user. WRMF de-
fines this task as a regularized least-squares problem based
on a weighting matrix, which differentiates between observed
and unobserved activities in the data [18]. The results for
WRFM presented in Section 5 have been calculated using
the MyMediaLite 3.10 framework7 (2013-09-23) with k =
500 latent factors, l = 100 iterations and a regularization
value λ = .001.

7http://www.mymedialite.net/

4.2 Parameter Investigation to Understand the
Dynamics of SUSTAIN (RQ2)

This section describes the setup and rationale of a param-
eter investigation that we conducted to tackle our second re-
search question: Which aspects of the SUSTAIN algorithm
contribute to the improved performance? In an initial study
that has been reported in [41] and in the comparative stud-
ies that will be presented in Section 5.1, we used the best
fitting parameters for unsupervised learning as suggested in
[33]. This parameter set results from extensive parameter
studies, applying a genetic algorithm to fine tune SUSTAIN
for a variety of learning data and learning problems. The
paper concluded that SUSTAIN does not show great sensi-
tivity to single parameter values but rather succeeds due to
its principles.

However, our learning task differs from the presented stud-
ies in multiple aspects, for instance in the amount of train-
ing data, in the application domain and most significantly
in the format of the input stimuli. In [33] the input stimuli
are characterized by multiple dimensions of input units. For
instance a dimension (e.g., color) with 3 input units (e.g.,
green, yellow, blue) could have an input vector of [0,0,1].
In our case an input stimulus consists of 500 dimensions
(i.e., LDA topics) of binary input units. Furthermore, data
that is typically available in non-commercial learning envi-
ronments, and equally, the social bookmarking datasets we
use in our study, are sparse and premature. With this in
mind, we conducted a short parameter study to better un-
derstand the underlying dynamics of our adapted approach
and to investigate possible inconsistencies. The priority was
to look into SUSTAIN’s parameters r, η in a first step, but
secondly, also to find the best fitting α value to optimally
weight the impact of CFu.

The results in Section 5.1 were generated using the de-
fault SUSTAIN parameters stated in [33], to avoid tuning
our approach and thus favoring it over the baseline algo-
rithms. Additionally, the parameter study was performed
on separate holdout sets extracted from the training data
(using the same method as described in Section 4.1.2) in
order to prevent a biased study conducted on the test data.

SUSTAIN. First, we determined plausible ranges for r and
η, and defined sequential steps within these ranges. Ad-
ditionally, the simulation includes the originally suggested
values as presented in Table 2.

For r, which strengthens the impact of input dimensions
by potentiating λi (see equation (2)), we start with r = 1
as a lower bound. This leads to a simulation with plain λ
values. From there, we continue linearly with r = r + 2
for r <= 21. As λ shows rather small values, with a great
percentage varying from 1.0 to 1.3, a relatively high value of
r seems to be reasonable.

For the learning rate η, we set the simulation span such
that ηmin > 1

Nmax
where Nmax is the maximal amount of

training resources per user. Thus, the learning rate η is set
to 7.5 E-4 on the lower bound, while 1 was chosen as an
upper bound. In between those bounds, three learning rates
per decimal power were tested. As the median values for
resources per user in our training sets are 12, 16 and 22 (see
Figure 1), we expect the optimal learning rate to be fairly
high.

As described in the original study setup, we initially sim-
plify the parameter study by treating τ = 0.5 as a fixed



value. τ is the threshold responsible for whether a new clus-
ter is formed or not and may range from 0 to 1.

When interpreting the first set of plots, additional ques-
tions appeared, such as, to what extent the training datasets
and the topic distribution of their users may shift the op-
timal amount of clusters. To this end, we looked into the
distribution of clusters and resources per user and dataset
that were calculated with the recommended parameter set-
ting outlined in Table 2. Finally, we investigated the per-
formance development of SUSTAIN with different learning
rates when varying τ within its range of 0 and 1, monitoring
steps of .1. Considering insights from the first parameter
setting, we fixed r to 9, and the learning rate to a range
from .01 to 1.

Weighting CFU . For α, which is the only parameter that
is not part of SUSTAIN, but inversely weights the impact
of the SUSTAIN and CFu components (see equation 5), we
examine α values between .1 and .9.

4.3 Comparing the Computational Efficiency
of Discussed Algorithms (RQ3)

In order to answer RQ3, we determined the computa-
tional complexity of our discussed recommender algorithms
using O-notations. We distinguished between offline com-
ponents of the algorithms, which can be calculated without
any knowledge of the target user, and online components,
which need to be calculated for the target user on-the-fly.
In order to validate our complexity analysis, we also mea-
sured the complete runtime (i.e., training + testing time)
of the algorithms. We conducted the runtime measurement
on an IBM System x3550 server with two 2.0 GHz six-core
Intel Xeon E5-2620 processors and 128 GB of RAM using
Ubuntu 12.04.2 and Java 1.8.

4.4 Relation between SUSTAIN attentional en-
tropy values and SPEAR scores (RQ4)

One of the important factors when considering user behav-
ior in social bookmarking systems is the level of the user’s
expertise. Expert users tend to provide high quality tags
that describe a resource in a more useful way [31, 32], and
they also tend to discover and tag high quality resources
earlier, bringing them to the attention of other users in the
community [36].

To calculate user’s expertise levels, literature provides a
very well established algorithm known as SPEAR - SPamming-
resistant Expertise Analysis and Ranking [36, 45], which is
based on the HITS (Hypertext Induced Topic Search) al-
gorithm. The authors determine the level of the user’s ex-
pertise based on two principles: (1) mutual reinforcement
between user expertise and resource quality and (2) experts
are discoverers, curious users who tend to identify high qual-
ity resources before other users (followers). This indicates
that expert users are the first to collect many high quality
resources and, in turn, high quality resources are tagged by
users showing high expertise levels.

Expertise scores. Based on the work of [36], we calcu-
lated SPEAR expertise scores for users and resources in our
datasets described in Table 3.

For M users and N resources we define a set of activi-
ties: activity = (user, resource, tag, timestamp), which de-
scribes at which timestamp a user has tagged a resource.
User expertise scores and resource quality scores vectors are

defined as ~E = (e1, e2, ..., eM ) and ~Q = (q1, q2, ..., qN ), re-
spectively. Initially, the values of these two vectors are set
to 1.0. As has already been mentioned, SPEAR implements
the mutual reinforcement principle, which indicates that the
expertise score of a user depends on the quality scores of the
tagged resources and the quality score of a resource depends
on the expertise score of the users who tagged that resource.

Thus, an adjacency matrix A of size M×N is constructed
next, containing one of the following values: (1) l + 1 if
user i has tagged resource j before l other users or (2) 0
if user i has not tagged resource j. Assigning adjacency
matrix values this way also enables the implementation of
the discoverer/follower principle, i.e., if user i was the first
that tagged resource j, then the corresponding value Aij
would be the total number of users that tagged j, and if
user i tagged the resource j most recently, Aij = 1. We
applied the credit score function suggested by [36] to A, so
that Aij =

√
Aij . Finally, user expert scores and resource

quality scores are calculated through an iterative process
based on equations 8 and 9:

~E = ~Q×AT (8)

~Q = ~E ×A (9)

To relate SUSTAIN attentional focus values to the SPEAR
scores, we only considered the expertise score vector. The
calculated expertise scores for the highest ranked users in
our datasets vary between .01 in Delicious and CiteULike,
and .03 in BibSonomy. The low values are due to data spar-
sity, i.e., many resources were only tagged by a single user.

Attentional entropy values. The expertise scores were
correlated with the entropy of the users’ attentional tunings
derived from SUSTAIN. Thus, SUSTAIN gives us for each
of the Z topics a user-specific attentional tuning, which can
be combined using the Shannon entropy. We calculated the
entropy of the distribution of users’ attentional tunings ap-
plying the following equation:

S = −
Z∑
i=1

p(xi) · log(p(xi)) (10)

where p(xi) is the probability that the attentional tuning
value xi occurs. In this respect, a user with a high at-
tentional entropy is interested in a rich set of topics and
thus, can be seen as curious user (discoverer), which should
also correlate with a high SPEAR score if our hypothesis
is correct. The results of this correlation are presented in
Section 5.4.

5. RESULTS AND DISCUSSION
In this section, we present and discuss the results of our

evaluation aligned to our four research questions presented
in Section 1.

5.1 Model Validation Based on Recommenda-
tion Accuracy (RQ1)

In order to tackle our first research question, we compared
our approach to a wide set of state-of-the-art resource rec-
ommender algorithms. The results in Figure 2 and Table
4 reveal that the simplest baseline algorithm, i.e., the un-
personalized MP approach, achieves very low estimates of
accuracy. Across all datasets, the other baseline algorithms



0.00 0.02 0.04 0.06 0.08 0.10

Recall

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
re

ci
si

on

MP
CFR
CBT

WRMF
CFU
SUSTAIN
SUSTAIN+CFU

(a) BibSonomy

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16

Recall

0.00

0.02

0.04

0.06

0.08

0.10

P
re

ci
si

on

MP
CFR
CBT

WRMF
CFU
SUSTAIN
SUSTAIN+CFU

(b) CiteULike

0.00 0.05 0.10 0.15 0.20 0.25

Recall

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

P
re

ci
si

on

MP
CFR
CBT

WRMF
CFU
SUSTAIN
SUSTAIN+CFU

(c) Delicious

Figure 2: Precision/Recall plots for BibSonomy, CiteULike and Delicious showing the recommender accuracy
of our approach SUSTAIN+CFU in comparison to the baseline methods for k = 1 - 20 recommended resources.
The results indicate that SUSTAIN+CFU provides higher Precision and Recall estimates than CFU (RQ1) and
SUSTAIN for each k and in all three datasets. In the case of BibSonomy, SUSTAIN+CFU even outperforms
all baseline methods, including WRMF.

Dataset Metric MP CFR CBT WRMF CFU SUSTAIN SUSTAIN+CFU

BibSonomy

nDCG@20 .0142 .0569 .0401 .0491 .0594 .0628 .0739
MAP@20 .0057 .0425 .0211 .0357 .0429 .0436 .0543
R@20 .0204 .0803 .0679 .0751 .0780 .0902 .0981
P@20 .0099 .0223 .0272 .0132 .0269 .0295 .0328

CiteULike

nDCG@20 .0064 .1006 .0376 .0411 .0753 .0828 .0977
MAP@20 .0031 .0699 .0170 .0210 .0468 .0503 .0634
R@20 .0090 .1332 .0697 .0658 .1149 .1344 .1445
P@20 .0023 .0289 .0174 .0218 .0257 .0279 .0310

Delicious

nDCG@20 .0038 .1148 .0335 .1951 .13 .131 .1799
MAP@20 .0011 .0907 .0134 .1576 .0743 .0936 .1275
R@20 .0071 .1333 .0447 .2216 .1599 .1649 .2072
P@20 .0017 .0512 .0173 .1229 .0785 .0826 .1047

Table 4: nDCG@20, MAP@20, R@20 and P@20 estimates for BibSonomy, CiteULike and Delicious in relation
to RQ1. The results indicate that our proposed approach SUSTAIN+CFU outperform CFU (RQ1) and
SUSTAIN in all settings. Furthermore, SUSTAIN+CFU is able to compete with the computationally more
expensive WRMF approach. Note: highest accuracy values per dataset over all algorithms are highlighted
in bold.

reach larger estimates and therefore seem to be successful
in explaining a substantial amount of variance in user be-
havior. Figure 2 reveals the evolution of accuracy values
with a growing number of recommendations (i.e., one to 20).
Note that recall (per definition) increases with the number
of recommended items. Finally, Table 2 presents the results
achieved with 20 recommended items.

Our evaluation results indicate that our SUSTAIN+CFU
approach outperforms CFU and SUSTAIN in all settings.
For instance, in the Precision/Recall plots in Figure 2, we
can see that there is no overlap between corresponding curves,
with SUSTAIN+CFU always reaching higher values than
SUSTAIN and CFU separately. Moreover, results of the
ranking-dependent metric nDCG@20 in Table 4 particu-
larly show a remarkably better value for SUSTAIN+CFU
than CFU , demonstrating that our approach, through its im-
proved personalization, can be used to successfully re-rank
candidate resources identified by CFU . We attribute this to

the fact that the user-based CF cannot rank the resources of
a neighbor. This possibly leads to a list of recommendations
that contains only the resources of a user’s nearest neigh-
bor with no ranking. With our hybrid approach, we tackle
this issue. Thus, we can answer our first research question
positively. Interestingly, the performance of the algorithms
varies greatly across BibSonomy, CiteULike and Delicious.
Regarding nDCG@20 a different algorithm wins in each of
the three datasets. For instance, in the case of CiteULike,
the best results are achieved with CFR. We can explain this
by studying the average topic similarity per user. In CiteU-
Like (18.9%), it is much higher than in BibSonomy (7.7%)
and Delicious (4.5%), indicating a more thematically con-
sistent resource search behavior. Note that we define the
average topic similarity per user as the average pairwise co-
sine similarity between the topic vectors of all resources a
user has bookmarked. This is averaged over all users. The
higher consistency positively impacts predictions that are
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Figure 3: Recommendation effectiveness influenced by learning rate and attentional focus parameter.

based on resources collected in the past, such as CFR-based
predictions.

In the case of Delicious, the users in the dataset are cho-
sen using a mutual-fan crawling strategy (see [7]) and thus,
are not independent from each other. This is conducive
to methods that capture relations between users with com-
mon resources by means of high-dimensional arrays, such as
WRMF. However, compared to the other algorithms, espe-
cially to CFR and WRMF, SUSTAIN+CFU demonstrates
relatively robust estimates (especially in terms of Precision
and Recall) as our approach provides fairly good results in
all three datasets. SUSTAIN+CFU shows particularly good
results on BibSonomy, where it outperforms all baseline al-
gorithms.

5.2 Parameter Investigation to Understand the
Dynamics of SUSTAIN (RQ2)

This section presents and discusses insights from a param-
eter study that we conducted to address our second research
question. Specifically, we aim to identify the core aspects of
the SUSTAIN model that have the greatest effects on the
performance of our model on our datasets. We were also
able to verify the impact of user traces and detect and ex-
plain particularities of our three datasets.

SUSTAIN. In Figure 3, results of the first simulation are
illustrated. In this setup, we treated τ = .5 as a fixed vari-
able, similar to the original parameter study (see [33]), and
solely varied learning rate η and attentional focus param-
eter r within a parameter range, as explained in 4.2. The
plots show SUSTAIN’s performance on the y-axis given as
nDCG@20 values and the learning rates on the x-axis. The
shape of the box plot indicates the distribution of the perfor-
mance values caused by a set of different r’s, which means,
the higher the box plot, the greater the influence of r. Even
though some variation can be observed, for the best per-
forming η, the influence of r seems to be marginal in this
setting.

In our case, the learning rate tends to be the most im-
portant factor to consider. We identify two scenarios: (i) if
the learning rate is too small, a user’s behavior cannot be
tracked fast enough and (ii) if the learning rate is too high,

the algorithm forgets previous resources too quickly. The
first scenario is likely to apply to users with few resources,
whereas, the second scenario is potentially problematic for
users with many resources. As illustrated in Figure 1, our
training datasets show a large variation in the distribution
of training resources per user, within and between datasets.
However, the common trend shows that about 50 percent of
users have less than 25 resources available for training the
algorithm. In line with these observations, SUSTAIN’s per-
formance peaks at an intermediate value around .1. In our
case, this particularly proves that the browsing history of a
user needs to be taken into account for optimal predictions,
and not just the most recent item.

Among the three datasets, the learning rate has the great-
est impact on Delicious (note the ranges of nDCG@20). An
explanation of this behavior can be derived from Figure 4,
which presents a snapshot of the cluster resource distribution
per user and dataset. In the case of Delicious, the overall
trend shows that a new cluster is created for each second or
third resource. Since only the cluster with the highest ac-
tivation learns in our approach, the strong influence of the
learning rate, or in other words the need for faster learning
per cluster, seems reasonable.

Given that a new cluster is created whenever a new re-
source is added that cannot be integrated into any of the
existing clusters due to a lack of similarities, the cluster dis-
tribution also presents the level of topic overlap among the
resources of a typical user. For instance, when calculating
basic statistics for the resource to cluster ratio of Delicious,
we find that the average value is 2.8 resources per cluster
in comparison to 4.2 resources per cluster for CiteULike, for
instance. This indicates a large overlap between resources
of users in CiteULike. Furthermore, we can observe a de-
creasing trend of the resource-to-cluster ratio as the number
of resources grows. Furthermore, the plot for CiteULike
highlights the rather weak relationship between clusters and
resources, which signifies a great variety among users.

These results made us question how the number of clusters
impacts the performance, and whether a dynamic clustering
approach is even necessary for our task. In particular, we
wanted to investigate if a different τ could lead to a bet-
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Figure 4: Snapshot of the distribution of the clusters and resources appearing with parameters recommended
in the literature. Please note that the range of the plots is restricted in order to improve readability.
BibSonomy and CiteULike have both about 100 users with more than 150 resources, which are not depicted
in this plot.
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Figure 5: Recommendation effectiveness influenced by learning rate and the number of clusters.

ter performance with the training sets. Thus, in a second
simulation, we observed the performance development when
varying τ and η. This time r = 9 was treated as a fixed
variable, due to the marginal difference it caused in our first
study. Line charts in Figure 5 present our findings. Re-
garding the optimal number of clusters, we can see that the
three datasets vary greatly in their behavior. Delicious per-
forms best with only one cluster (i.e., τ = 0), CiteULike
and BibSonomy show better results with τ = .3 and τ = .5,
respectively.

Delicious is the dataset most sensitive to τ (note the ranges
of nDCG@20). Again, we think this is due to the high varia-
tion of topics, which leads to overfitting when too many clus-
ters are formed. BibSonomy exhibits a larger topic overlap
than Delicious. At the same time, in the case of Bibson-
omy, we are provided with a much larger amount of training
data per user than is the case with Delicious and CiteU-
Like. Figure 1 for instance shows that 25 percent of users

have between 66 and 1841 resources available for training.
CiteULike differs due to its small amount of training data
per user. Note the comparably low values for median and
third quartile. This results in an optimal number of clusters
between one and seven with the mean = 1.05. Thus, results
clearly suggest that the optimal number of clusters varies
with the properties of the training data. We conclude that
this value relates to the available number of training samples
and the topic density.

Weighting CFU . We completed a simulation varying α
from 0 to 1 to find the best fit for the weighting of CFU to
SUSTAIN (see 5). Results identified α = .65 as the best
fitting value for all datasets. Moreover, all values in the
range of .3 to .8 perform close to optimal.



Algorithm Component Type Complexity Reference
MP Complete Offline O(|P |) Parra & Sabhebi [37]
CBT Similarity Offline O(|U | · |R| · Z)

Recommendation Online O(|U | · |Su|)
Complete Online O(|U | · |Su|) Basilico & Hofmann [4]

CFU Similarity Offline O(|U |2)
Recommendation Online O(|U | · |Vu| · |Rv|)
Complete Online O(|U | · |Vu| · |Rv|) Schafer et al. [40]

CFR Similarity Offline O(|R|2)
Recommendation Online O(|U | · |Ru| · |Sr|)
Complete Online O(|U | · |Ru| · |Sr|) Sarwar et al. [39]

SUSTAIN / Topic Extraction Offline O(|R| · |T | · Z) Blei et al. [5]
SUSTAIN+CFU Candidates Online O(|U | · |Vu| · |Rv|) Schafer et al. [40]

SUSTAIN Training Online O(|U | · |Ru| · Z)
SUSTAIN Testing Online O(|U | · |Cu| · Z)
Complete Online O(|U | · (|Ru|+ |Cu|) · Z) Love et al. [33]

WRMF Complete Online O(|U | · |R| · k2 · l) Ning et al. [35]

Table 5: Computational complexity of the algorithms showing that our SUSTAIN+CFU approach provides a
lower complexity than WRMF. We distinguish between offline (i.e., can be calculated without any knowledge
of the target user) and online complexity (i.e., can only be calculated at runtime) components.
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Figure 6: Complete runtime (i.e., training + testing
time) of the algorithms in milliseconds (log scale) for
the Delicious dataset. The plot verifies our findings
regarding the computational complexities presented
in Table 5 since our SUSTAIN-based approach pro-
vides a much lower complete runtime than WRMF.
Please note that the other datasets provided similar
results.

5.3 Comparing the Computational Efficiency
of Discussed Algorithms (RQ3)

In this section, we investigate our third research question,
considering the extent to which recommendations can be cal-
culated in a computationally efficient way using SUSTAIN+CFu
in comparison to other state-of-the-art algorithms like WRMF.
The computational complexity of the approaches is shown
in Table 5. In order to validate our complexity analysis, we
also present the complete runtime (i.e., training + testing
time) of the algorithms for the Delicious dataset in Figure
6 (the other datasets provided similar results). We discuss
our findings for each algorithm as follows:

MP. The unpersonalized MostPopular approach has the
lowest complexity. It has to analyze all posts in the dataset
only once in order to calculate the overall frequencies.

CFU . User-based Collaborative Filtering consists of an of-
fline and an online component. The offline component calcu-
lates similarities between all users, whereas the online com-
ponent analyzes the resources Rv of the most similar users
(i.e., the neighbors Vu) of user u to calculate recommenda-
tions. Thus, the complete computational complexity only
depends on the online component.

CFR. Resource-based Collaborative Filtering works much
like CFU . It needs to first calculate similarities between all
resources offline and then calculate recommendations online.
In the online step, CFR analyzes the most similar resources
Sr for each resource r in the set of the resources Ru of user
u. Since our datasets’ |R| and |Ru| are larger than |U | and
|Vu| (20 in our case) respectively, CFR also has a higher
complexity than CFU .

CBT . The Content-based Filtering using Topics approach
mainly consists of the offline similarity calculation between
users and resources, which is highly dependent on the num-
ber of topics Z (i.e., 500 in our case). For the online recom-
mendation step, only the most similar resources Su for a user
u have to be analyzed, which is computationally efficient.

SUSTAIN+CFU . Our hybrid SUSTAIN+CFU approach
consists of a computationally expensive topic extraction step
that is based on LDA. The complexity of LDA depends on
the number of tags |T |, the number of resources |R| and the
number of topics Z. Furthermore, SUSTAIN+CFU requires
an online recommendation calculation step, where candidate
resources are identified and the SUSTAIN model is trained
and tested. The identification of candidate resources is per-
formed by CFU and the training of the SUSTAIN model is
completed for all resources Ru of user u based on the topic
space of size Z. The testing (or prediction) step is carried
out for each candidate resource in the set of candidates Cu
for a user u. Taken together, the computational complexity
of our approach is given by O(|U | · (|Ru|+ |Cu|) · Z) which
is asymptotically comparable to CFR. The same holds for
the pure SUSTAIN approach as the candidate set needs to
be calculated as well.

WRMF. The computationally most complex algorithm used
in our study is the matrix factorization based WRMF ap-
proach. For each user u in U , WRMF needs to analyze all
resources R depending on the squared factor dimension k
(i.e., 500 in our case) and the number of iterations l (i.e.,
100 in this paper). Since |R| is far larger than |Ru| + |Cu|
and k2 is the squared value of Z, it is obvious that our
SUSTAIN+CFU approach is computationally much more
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Figure 7: Relation between SUSTAIN attentional entropy values and SPEAR’s expertise scores for BibSon-
omy, CiteULike and Delicious (RQ4). Each plot illustrates the correlation between these values in the main
panel and the data distributions in the upper and right plots. We observe Spearman Rank Correlation values
between .55 for Delicious and .83 for BibSonomy, which indicates that users with a high attentional entropy
value also receive a high expertise score.

efficient than WRMF. Additionally, WRMF is an iterative
approach, which further increases its complexity by this fac-
tor.

Overall, our analysis shows the computationally efficiency
of our approach compared to other state-of-the-art algo-
rithms. This is further validated by the overall runtime re-
sults for the Delicious dataset shown in Figure 6. Hence, we
can also answer our third research question positively.

5.4 Relation between SUSTAIN attentional en-
tropy values and SPEAR scores (RQ4)

This section addresses our fourth research question (see
Section 1) that inquires whether users’ attentional entropies,
determined by SUSTAIN, correlate with users’ expertise scores
identified by the SPEAR algorithm. To this end, we fol-
lowed the procedure described in Section 4.4 to compare
SUSTAIN’s attentional entropy values with SPEAR’s exper-
tise scores four our three datasets. Results of this correlation
study are presented in Figure 7.

Again, the plots show clear differences between the three
datasets. Although we reach high Spearman rank correla-
tion values in all three settings there is a considerable vari-
ation between Delicious (.55), CiteULike (.62) and BibSon-
omy (.83). This is in line with results presented in Sec-
tions 5.1 and 5.2, where we discuss recommender accuracy
and SUSTAIN’s model dynamics. In all experiments, we
find that SUSTAIN+CFU performs best on BibSonomy and
worst on Delicious when compared to baseline algorithms. In
Figure 7, we can observe power-law like distributions for the
SPEAR expertise scores in all three datasets, whereas, the
distributions of SUSTAIN attentional entropy values vary
strongly. The Delicious dataset shows an almost random
distribution. Therefore, we presume that these findings are
closely related to how well SUSTAIN and its parameter set-
tings suit the properties of a specific dataset. However, the
overall high correlation suggests that users, who reach high
SPEAR expertise scores and can thus be identified as discov-
erers, also reach a high SUSTAIN attentional entropy value.

This corroborates our hypothesis that attentional entropy
values, and thus a user’s attentional focus, correlate with a
user’s curiosity. This also provides a positive answer to the
last research question in this work.

6. CONCLUSIONS AND FUTURE WORK
In this work, we investigated a model of human category

learning, SUSTAIN [33], which is applied to mimic a user’s
attentional focus and interpretation and its applicability to
the recommender domain. Using offline studies on three so-
cial bookmarking datasets (BibSonomy, CiteULike and De-
licious), we demonstrated its potential to personalize and
improve user-based CF predictions. We attribute this im-
provement to the cognitive plausibility of SUSTAIN. The
dynamically created user model allows for a more flexible
and thorough representation of a user’s decision making on
a given set of resources: Reconstructing the user history in
the form of an iteratively trained model with history-specific
patterns of attentional tunings and clusters does more jus-
tice to a user’s individuality than a CF-based representa-
tion of user-resource relations. Deepening our investiga-
tions, we show that both aspects, i.e., memorization of a
user’s history as well as clustering, contribute to the algo-
rithm’s performance. Our parameter study revealed that
restricting cluster growth can prevent overfitting in sparse
data environments. Additionally, we observed that our hy-
brid SUSTAIN+CFU model is more robust in terms of accu-
racy estimates and less complex in terms of computational
complexity than the Matrix Factorization-based approach
WRMF.

Finally, we utilized the SPEAR algorithm to identify cu-
rious users. In SPEAR, curiosity is defined as a discoverer
behavior (i.e., curious users tend to be faster at finding high
quality resources). We connected the Spear score for the
users in our dataset with their SUSTAIN-specific attentional
entropy values and we found that a user’s attentional focus
indeed correlates with their curiosity. The highest correla-



tion is achieved with the BibSonomy dataset, for which the
SUSTAIN approach is also most effective.

We conclude that our attempt to keep the translation from
theory into technology as direct as possible holds advantages
for both technical and conceptual aspects of recommender
systems’ research. By applying computational models of
human cognition, we can improve the performance of exist-
ing recommender mechanisms and at the same time gain a
deeper understanding of fine-grained level dynamics in So-
cial Information Systems.

Limitations and future work. We aim to improve and
further evaluate our model in various ways. First, we are
working on a variant that is independent of a resource candi-
date set obtained by CFU and searches for user-specific rec-
ommendations only by means of the correspondingly trained
SUSTAIN network. Second, we will make use of the net-
work’s sensitivity towards a user’s mental state to realize a
more dynamic recommendation logic. In particular, based
on creative cognition research (e.g., [13]) and in line with the
findings of our evaluation studies, we assume a broader at-
tentional focus (i.e., higher curiosity) to be associated with a
stronger orientation toward novel or more diverse resources.
If the algorithm integrates this association, depending on the
user model, recommendations should become either more
accurate or diverse.

With respect to recommender evaluation, the question
arises whether SUSTAIN can realize its potential of pro-
viding additional benefits in cold-start and sparse data en-
vironments to improve real-life learning experiences. Online
evaluations are less prone to error and misinterpretation,
since they provide a direct user feedback in comparison to
offline studies, where wrong predictions could be the result
of a user’s poor searching abilities.
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APPENDIX
A. SUSTAIN RESULTS FOR DIFFERENT NUM-

BERS OF LDA TOPICS
This section is an extension to RQ1, with Table 6 present-

ing simulation results for SUSTAIN in the Delicious dataset
when applied to LDA topic sizes of 100, 500 and 1000. We
see that the best results are reached when using 500 LDA
topics, which verifies our choice to use this number of top-
ics for our experiments. We observed the same results for
BibSonomy and CiteULike. Furthermore, this table also
provides SUSTAIN results for different numbers of recom-
mended resources k.

Metric Z k=1 k=3 k=5 k=10 k=20

nDCG

100 .0036 .0089 .0128 .0202 .0374
500 .0232 .0471 .0649 .0958 .1310
1000 .0066 .0142 .0188 .0295 .0481

MAP

100 .0021 .0043 .0056 .0078 .0120
500 .0127 .0287 .0419 .0684 .0936
1000 .0043 .0082 .0099 .0138 .0189

Recall

100 .0021 .0071 .0119 .0234 .0589
500 .0127 .0347 .0556 .0999 .1658
1000 .0043 .0127 .0183 .0351 .0708

Precision

100 .0147 .0182 .0195 .0201 .0256
500 .0967 .0942 .0977 .0965 .0826
1000 .0224 .0231 .0239 .0275 .0317

Table 6: nDCG, MAP, R and P estimates for SU-
STAIN in the Delicious dataset based on different
numbers of LDA topics. The results show that 500
LDA topics lead to the best results. Note: highest
accuracy values are highlighted in bold.


