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Abstract In this paper, we analyze the influence of social

status on opinion dynamics and consensus building in

collaboration networks. To that end, we simulate the dif-

fusion of opinions in empirical networks and take into

account both the network structure and the individual dif-

ferences of people reflected through their social status. For

our simulations, we adapt a well-known Naming Game

model and extend it with the Probabilistic Meeting Rule to

account for the social status of individuals participating in a

meeting. This mechanism is sufficiently flexible and allows

us to model various society forms in collaboration net-

works, as well as the emergence or disappearance of social

classes. In particular, we are interested in the way how

these society forms facilitate opinion diffusion. Our

experimental findings reveal that (i) opinion dynamics in

collaboration networks is indeed affected by the individu-

als’ social status and (ii) this effect is intricate and non-

obvious. Our results suggest that in most of the networks

the social status favors consensus building. However,

relying on it too strongly can also slow down the opinion

diffusion, indicating that there is a specific setting for an

optimal benefit of social status on the consensus building.

On the other hand, in networks where status does not

correlate with degree or in networks with a positive degree

assortativity consensus is always reached quickly regard-

less of the status.

Keywords Opinion dynamics � Consensus building �
Collaboration networks � Naming Game

1 Introduction

It is our natural predisposition to interact with people who

have a high social status in our social communities. Cus-

tomarily, our social interactions and, to some extent, our

behavior are influenced by actions of individuals with a

high social status. In the field of social psychology, the

social status theory attempts to explain this phenomenon

(Markovsky et al. 1993; Walker et al. 2000; Willer 1999).

According to it, people tend to form their connections in a

social network to maximize their perceived social benefits

arising from the social status of their connections. Also, in

the work of Guha et al. (2004) the authors relate social

status to the mechanism of link formation in a social net-

work, hypothesizing that people with a lower social status

are more likely to create (directed) links with people of a

higher social status.

In this paper, however, we are not interested in the

relation between the social status and the process of link

formation, but rather in the relation between social status

and dynamical processes that may take place in a social or

collaboration network (i.e., a special case of social net-

work, in which users collaborate). One example of such

dynamical process is a so-called opinion dynamics process.

In our daily lives, we interact with our peers, discuss
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certain problems, exchange opinions and try to reach some

kind of consensus. The question we want to answer in this

paper is how social status influences such processes in a

collaboration network. For example, in a university class

there is a lively discussion between a student and her

mentor regarding their newest experimental results and

their interpretation. The mentor has a higher social status

than the student, due to a superior education, a broader

experience and a higher position in the organizational

hierarchy. Undoubtedly, while trying to reach a consensus,

the student will be influenced by opinions of her mentor

because of the latter’s convincing power (Castellano et al.

2009; Latané 1981). The literature (Castellano et al. 2009)

identifies this process as dynamics of agreement/disagree-

ment between persons belonging to a social group. For

clarity, in this paper we will refer to it as opinion dynamics.

1.1 Problem

The aim of this work is to extend our previous investiga-

tions (Hasani-Mavriqi et al. 2015) in respect of the influ-

ence of social status on the process of reaching consensus

within a social community that has a heterogeneous dis-

tribution of social status, by studying the underlying net-

work structure. In particular, we investigate new empirical

networks and construct synthetic networks to analyze the

impact of degree assortativity and the correlation between

degree and social status on opinion dynamics. While there

is a substantial body of work on opinion dynamics (see

Sect. 6) in general settings, we focus on a more specific

and more realistic situation in which the dynamics are

influenced not only by the network structure and the rele-

vant parameters but also by the intrinsic properties of every

single node in the network, such as social status. In other

words, we study the interplay between structure, dynamics

and exogenous node characteristics and how these complex

interactions influence the process of consensus building.

1.2 Approach and methods

In the field of statistical physics (Castellano et al. 2009),

opinion dynamics is commonly studied by applying

mathematical models and analytic approaches. To make

these complex problems tractable for mathematical analy-

sis, researchers make simplifications, such as presenting

opinions as sets of numbers, ignoring the network structure

(a typical approach from e.g., mean-field theory) and

neglecting the individual differences between nodes. Sim-

plifications narrow the scope of research down to theoret-

ical models, which typically do not consider empirical data.

Even so, statistical physics constitutes important basics for

the state-of-the-art research on social dynamics in collab-

oration networks. In this paper, we build upon these basics.

We take a computational approach and analyze opinion

dynamics by simulating the diffusion of opinions in

empirical collaboration networks (specifically, we study

datasets from a Q&A site StackExchange and a co-au-

thorship dataset). In our simulations, we consider the net-

work structure, apply a set of simple rules for opinion

diffusion and take into account people’s individual differ-

ences (e.g., their social status). In particular, we simulate

scenarios of peer interactions in empirical datasets

assuming that the status theory holds and observe the

consequences. We model the dynamics of opinion

spreading by adapting a well-known Naming Game model

(Baronchelli et al. 2006b) and extending it by incorporat-

ing a mechanism to configure the degree of the influence of

social status on the network dynamics. We termed this

mechanism the Probabilistic Meeting Rule. Through

parametrization, we are able to explore various scenarios

from the opposite sides of the spectrum: (i) We can com-

pletely neglect the status by allowing any two individuals

to exchange their opinions regardless of their social status

(an egalitarian society) (Arneson 2013); (ii) we can have

opinions flowing only in one direction—from individuals

with a higher social status to those with a lower social

status (a stratified society) (Weber 1964); (iii) we can

probabilistically model any situation in between these two

extreme cases, that is, a case in which opinions are very

likely to flow from individuals with a higher social status to

those with a lower social status, but with small probability

they can also flow into the other direction (a ranked soci-

ety) (Weber 1964).

1.3 Contributions

The main contributions of our work are twofold. Firstly,

with our paper we contribute to the field of opinion

dynamics methodologically. Secondly, with our work we

also make an empirical contribution.

Our methodological contribution can be summarized as

follows. To model various scenarios of how social status

may influence the opinion dynamics, we have invented the

Probabilistic Meeting Rule (see Sect. 2.2) and extended a

standard Naming Game model with that rule. The exten-

sion is flexible and may reflect a variety of interesting

scenarios, such as the emergence or disappearance of social

classes in collaboration networks. Further, we provide an

initial analysis on how this meeting rule may influence the

consensus building process. This analysis allows us to

obtain an intuition on the possible outcomes of our simu-

lations. The opinion flow between different user groups can

be easily controlled through our computational approach

for parameter estimation (see Sect. 2.3). We also analyze

the influence of network structure, particularly the influ-

ence of degree assortativity, and the correlation between
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degree and status on the process of consensus reaching in

collaboration networks.

From the empirical point of view, wemade amuch-needed

contribution to the limited body of research onNaming Game

and empirical data (Gao et al. 2014) and obtained very

interesting empirical experimental results. For example, based

on the status theory it can be expected that consensus can be

reached faster when social status plays a role. However, our

results only partially confirm this expectation. In particular, if

an opinion flows only in one high- to low-status direction,

opinions do not converge at all since there are always a few

people who do not adopt the common opinion from the net-

work. However, with only a low influence of social status

convergence is reached faster than with no status at all (as in a

standard Naming Game). These results suggest that finding

the optimal process of consensus reaching is a tuning act of

how to integrate social status in the opinion dynamics. In

addition, our investigations on the role of network structure on

opinion dynamics reveal that (i) hubs are important factors for

spreading a single common opinion among other nodes and

(ii) in networkswith a positive assortativity degree or a degree

sequence decorrelated with user’s social status, the consensus

is reached without external intervention.

The StackExchange empirical networks used in our

previous work (Hasani-Mavriqi et al. 2015) are disassor-

tative networks, i.e., they have a negative degree assorta-

tivity coefficient. In disassortative networks, high-degree

nodes are on average connected to nodes with low(er)

degree (Noldus and Mieghem 2015). In this work, we

extend our experiments with an additional type of empiri-

cal network, namely assortative networks, in which phys-

ical connections between low and high agents are very rare.

We turn to co-authorship networks as an example of net-

works that exhibit a positive degree assortativity coeffi-

cient, indicating that, on average, nodes with similar

degrees are connected together.

2 Methodology

2.1 Naming Game

Naming Game (Baronchelli et al. 2005, 2006a, b; Dal-

l’Asta et al. 2006a, b) is a networked agent-based topology,

in which agent-to-agent interactions take place based on

predefined gaming rules. In particular, agents exchange

their opinions and try to reach a consensus about the name

of an unknown object. When all agents in the network

agree on the name, the network is considered to have

established a common opinion.

Agents in the game are represented as nodes of a net-

work, and edges between two agents allow them to interact

with each other. Names are represented with an inventory

of words, and each agent has her own inventory to store the

words. Technically, an inventory is a set (i.e., a bag) of

words. In the initial state, the inventories are empty. Two

random adjacent agents are chosen in each simulation step

to interact through a meeting: One agent is declared as a

speaker and the other as a listener. In the course of the

meeting, the speaker selects a word from her inventory and

communicates it to the listener (note that if the speaker’s

inventory is empty, a new unique word is created and

stored in the inventory). After communicating the word to

the listener, two scenarios are possible (see Fig. 1):

1. the word is not in the listener’s inventory—the word is

added to listener’s inventory,

2. otherwise, both speaker and listener agree on that word

and remove all other words from their inventories—

they agree on the selected word.

2.2 Naming Game and social status

We modify the Naming Game to account for social status.

As before, the agents are represented as network nodes,

Listener

Speaker
word1
word2

…
word1

word2
…

word1
word2

…

word2
word3

word2
word3

word1
word2
word3

with prob. psl

Case 1: Uptake

Listener

Speaker
word1
word2

…

word1
word2

…
word2

word2
word3

word2
word3

word2

with prob. psl

Inventory before
mee�ng Mee�ng

Inventory a�er 
mee�ng

Mee�ng

Case 2: Agreement
Inventory before

mee�ng
Inventory a�er 

mee�ng

Time

Decide if
mee�ng occurs

Decide if
mee�ng occurs

Probabilis�c Mee�ng Rule

with prob. (1 - psl) 

with prob. (1 - psl)

1 2 3 4

Fig. 1 NamingGamemeeting. The classical NamingGame consists of

steps 1, 3 and 4, whereas our extension also includes the step 2. In step 2,

we decide whether the meeting between two agents occurs by

evaluating Probabilistic Meeting Rule (Eq. 1). For illustration, con-

sider a ranked society with stratification factor b ¼ 0:0001.Example 1:
Speaker’s status ss ¼ 101 and listener’s status sl ¼ 7967. The meeting

probability evaluates to psl ¼ 0:45.We then draw a number from [0, 1]

uniformly at random (e.g., 0.93) and compare it with psl—the meeting

does not take place. Example 2: Let ss ¼ 576 and sl ¼ 865, which leads

to the meeting probability psl ¼ 0:97.We again draw a random number

from [0, 1] (e.g., 0.77)—in this case the meeting takes place. If the

meeting takes place, two scenarios are possible. (1) If the speaker

transmits aword (red) that is unknown by the listener, the listener adds it

to her inventory (uptake). (2) If the word chosen by the speaker is also

known to the listener, they both agree on this word. In this case, they

both remove all other words from their inventories and keep only the

transmitted one (agreement) (color figure online)
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edges denote whether two agents can interact or not, and

names (opinions) are represented as word inventories.

The first difference between our model and a standard

Naming Game is the simulation initialization. We initialize

the inventories with a given number of selected words from

a given vocabulary. The words are selected (with

replacement uniformly) at random from the vocabulary.

This results in an initial state where each opinion occurs

with the same probability.

Secondly, we adopt the social status that governs how

agent interactions are turned into meetings—not every

agent interaction is turned into a meeting. During each

interaction, a random agent and a random neighbor are

chosen to have a meeting. Then, the speaker and the lis-

tener are assigned randomly. Based on the difference

between the speaker’s and the listener’s statuses, we ran-

domly decide whether the meeting occurs.

To decide whether a meeting takes place, we introduce

the Probabilistic Meeting Rule. Basically, the Probabilistic

Meeting Rule is a function that takes the agents’ social

statuses as input and, based on the difference between the

speaker’s and listener’s status, calculates the probability of

the meeting taking place. The rule is defined by the fol-

lowing equation:

psl ¼ min 1; eb�ðss�slÞ
� �

; ð1Þ

where ss is the speaker’s status, sl is the listener’s status

and b� 0 is the stratification factor. The stratification

factor b, which can be viewed as a measure of confor-

mance to the agent’s social status, is a tuning parameter in

our model. The above equation results in the following

probabilities. If the speaker’s status is higher than the lis-

tener’s status, psl has the value of 1, that is, such a meeting

always takes a place. If the opposite is true, various sce-

narios are possible, depending on the value of the stratifi-

cation factor. For example, b ¼ 0 indicates an

egalitarian society and psl is always equal to 1. However,

if we slowly increase the stratification factor, psl will start

to decay and in general will take a value between 0 and 1,

which signifies a ranked society (see the running example

in Fig. 1). If we continue to increase b, we will soon (be-

cause of the exponential term in the equation) reach a

situation where psl for all practical matters is equal to 0. In

other words, we have reached a stratified society where

meetings take place only if the speaker’s status is higher

than the listener’s status but never in the opposite case.

The application of our Probabilistic Meeting Rule to our

datasets is depicted in Fig. 2. The probability of a meeting

taking place is shown in correlation with the percentage of

pairs of agents participating in that meeting. The above-

mentioned scenarios are represented as follows: egalitar-

ian society (corresponds to b ¼ 0)—green bar (circle

texture), ranked society (e.g., b ¼ 0:0001)—blue bar (line

texture) and stratified society (e.g., b ¼ 1)—red bar (star

texture).

2.3 Estimating stratification factor

In this section, our primary goal is to investigate how the

stratification factor b from Probabilistic Meeting

Rule (Eq.1) can be estimated such that the opinion flow

between different classes of agents can be easily controlled.

We first draw a line in the distribution of agents’ statuses

and separate the agents into two classes: high (agents with

the status above 90th percentile) and low (agents below

90th percentile) class. Our focus lies on the estimation of

the expected meeting probability between low- and high-

status agents. Please note, however, that the methodology

presented here can be applied also in a general setting to

estimate, for example, expected meeting probability

between low-to-low, or high-to-high agents.

The expected meeting probability depends on the dif-

ferences between agents’ social status, which in turn are

random variables with unknown probability density func-

tions. Formally, the problem is to calculate the expectations

of a function (Probabilistic Meeting Rule) of a difference

of two random variables, which are conditioned on their

particular values, that is, they are conditioned on either

being a low or a high agent.

Fig. 2 Naming Game and social status. The application of the

Probabilistic Meeting Rule to our datasets and the emergence of

social classes based on the stratification factor b are illustrated. The

green bar with circle texture indicates an egalitarian society that

corresponds to b ¼ 0, in which each agent can meet every other

agent. With an increase in b, our society becomes more conservative

(as represented with the blue bars with line texture) and becomes a

ranked society. In red bars with circle texture, we observe a two-class

society, that is, a stratified society (color figure online)
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Let X be a random variable (r.v.) representing a user’s

social status. The probability density function (PDF) of the

r.v. X is given with p(x). We define now a new random

variable conditioned on a specific value of that variable xh,

that is, let us consider a random variable U for a low-status

agent and a random variable V for a high-status agent. The

PDF of U is then given by pðuÞ ¼ pðxjx� xhÞ and PDF of V

by pðvÞ ¼ pðxjx[ xhÞ. Both of these PDFs can be obtained

by normalizing with a cumulative and complementary

cumulative distribution function evaluated at xh.

To consider the differences between agents’ social sta-

tuses, we would need to define a third r.v. Z ¼ U � V , and

under the assumption that the r.v. U and V are independent,

we could calculate the PDF of Z by calculating the convo-

lution integral for U and V. Finally, we can define the

expected value of ProbabilisticMeetingRule eb�z as follows:

E½eb�z� ¼
Z 1

�1
eb�z � pðzÞdz ð2Þ

Since in practice none of these steps is tractable for the

analytic solution,we resort to the empirical and approximative

parameter estimation. To that end, we first create an empirical

distribution for the random variable Z. First, we split agents

into two classes: low and high defined by, for example, the

90th percentile (although the choice for xh is in fact arbitrary)

in the distribution of agents’ status values. Second, we iterate

over all the links in the network and keep only low-to-high

pairs to construct an empirical distribution of the differences

between agents’ statuses. Please note that the same procedure

may be repeated for estimation of, for instance, the expected

meeting probability of low-to-low or any other interesting

pairs (instead of keeping low-to-high pairs we just need to

keep the pairs in question). From this distribution, we then

draw a random sample of size N and estimate the expectation

value for eb�z by applying the well-known Monte Carlo esti-

mation (Metropolis and Ulam 1949):

E½eb�z� ¼ 1

N

XN
i¼1

eb�zi ð3Þ

Our empirical solution is flexible and can be easily

adapted to consider opinion flow in other agents’ groups

(e.g., high-to-high). By defining the percentage of allowed

opinion flow between agents in different groups, we can

determine b for networks of various structure and scope.

3 Datasets and experiments

3.1 Datasets

In our experiments, we use two types of empirical datasets:

(i) the first one is derived from a Q&A site

(StackExchange1) and (ii) the second one is a co-authorship

dataset introduced in Tang et al. (2008).

In StackExchange, users collaborate, ask questions and

give answers on particular problems. After an iterative

discussion process, users exchange their opinions, find

solutions to a problem and agree on the best suggested

solutions (Tausczik et al. 2014). Such Q&A sites have a

reputation system which rewards users via reputation

scores based on their contributions (Halavais et al. 2014;

Movshovitz-Attias et al. 2013). Based on the policies of

this reputation system, users get appropriate reputation

scores for giving good answers, asking good questions or

voting on questions/answers of other users. It is evident

that high-reputation users contribute high-quality answers

(Movshovitz-Attias et al. 2013). We expect that high-rep-

utation users also demonstrate high convincing power

during the agreement process, influencing opinions of other

(low-reputation) users. In our experiments, we apply rep-

utation scores as a proxy for the social status and these two

terms are used interchangeably throughout the paper. The

StackExchange platform does not indicate associations

between users or friendship links. For that reason, we turn

our attention to collaboration networks which we extract by

analyzing co-posting activities of users in order to have

social ties between them (Adamic and Adar 2001; Halavais

et al. 2014; Tang et al. 2012). In Q&A sites, a co-posting

activity between two users refers to a scenario under which

two users comment on the same post. Thus, if two users

contributed in any way to a same post, they are connected

via an edge in the collaboration network. We analyze the

following StackExchange language datasets: French,

Spanish, Chinese, Japanese, German and English. They are

available for downloading for research purpose from the

StackExchange dataset archive.

We constructed our co-authorship network from the

empirical dataset presented in Tang et al. (2008) that is

freely available under.2 In this co-authorship dataset,

publication data are combined from three different sources:

DBLP, CiteSeer and Google Scholar, and the problem of

the author name disambiguation is addressed properly.

Two authors are connected via an edge in the co-authorship

network if they co-authored at least a publication together.

The dataset provides citation counts for each author, which

is used in our case as a proxy for author’s reputation.

3.2 Datasets statistics

The details of our empirical networks (derived from the

above-mentioned datasets) and their properties are given in

Table 1, with the number of nodes (n), number of edges

1 http://stackexchange.com/.
2 https://aminer.org/DBLP_Citation.
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(m), mean (l), median (l1=2), standard deviation (r) of the

reputation scores, assortativity coefficient (r) and modu-

larity (Q).

Among our StackExchange datasets, the English net-

work is the largest one with 30,656 nodes and

192,983 edges, whereas the French is the smallest one with

1478 nodes and 6668 edges in the network. The German,

Japanese, Chinese and Spanish networks lie in between the

English and French networks in terms of network size. The

co-authorship dataset is much larger in size compared with

all StackExchange datasets; with 1,057,194 nodes and

3,634,124 edges, it constitutes the largest dataset in our

experiments.

The negative assortativity coefficient r in our StackEx-

change datasets indicates a negative correlation (Newman

2003) between reputation scores over the network edges. In

other words, users with lower reputation scores are more

likely to connect to users with higher reputation scores. In

particular, a typical post in our datasets has many users

with low scores (e.g., who post a question) and only a few

or even only a single user with a high score (e.g., who

answers the question). This finding is in line with the

assumptions from the social status theory. The Chinese

network has the lowest absolute assortativity coefficient

among our networks, indicating that in this network there is

a smaller chance of connection with a dissimilar reputation

score. The Japanese and French networks have the highest

absolute assortativity coefficient. The co-authorship dataset

is characterized with a positive assortativity coefficient r,

which is typical for co-authorship networks in general

(Noldus and Mieghem 2015), indicating that, on average,

nodes with similar reputation scores are connected toge-

ther. Particularly, this means that authors having similar

social status in their community tend to publish an article

together.

The modularity score is a measure of strength of the

community structure in a network. A high modularity score

indicates the existence of strong communities in the net-

work, while a low modularity score means that the

community structure is not that strong (Newman 2006). In

our StackExchange networks, we observe low modularity

values corresponding to a very weak or almost nonexistent

community structure. As previously shown in a network

without communities, in general Naming Game converges

quickly to a single opinion (Baronchelli et al. 2006b). In

contrary, our co-authorship network exhibits much higher

modularity value; thus, the community structure in this

network is stronger.

The distribution of reputation scores and node degrees

resembles a heterogenous distribution for all networks,

which indicates that the majority of users in our collabo-

ration networks have low-reputation scores. Figure 3a

shows the English StackExchange network, in which the

correlation between the reputation scores and the node

degrees is a linear correlation with a Pearson correlation

coefficient of 0.88. All other StackExchange datasets have

comparable properties. In the case of the co-authorship

network shown (see Fig. 3b), the Pearson correlation

coefficient between the degree and the reputation score is

0.54. It is evident that there are cases of authors having a

high citation count (used as a proxy for reputation) but low

degree, which indicates that they possess a low number of

co-authored publications that are frequently cited. For

illustration purposes, we further investigated this property

of our co-authorship dataset and retrieved the names of the

authors having a low degree (lower than the 90th per-

centile) and a high citation count (higher than the 90th

percentile). For example, the author Dennis M. Volpano3 is

characterized in our dataset with a degree of 6 and a

citation count of 750. After checking the author’s website

and digital libraries such as IEEE Xplore, it is obvious that

the author published most of his publications as a single

author or in collaboration with other few authors, but his

publications received a considerable attention from the

community and are highly cited. The opposite scenarios are

also possible, which correspond to authors being active in

Table 1 StackExchange and

co-authorship datasets
Dataset Type n m l l1/2 r r Q

StackExch. French 1478 6668 298 111 1273 -0.23 0.31

Spanish 1584 6908 196 101 554 -0.19 0.38

Chinese 1985 8556 160 61 477 -0.15 0.41

Japanese 2069 11,155 328 77 1535 -0.16 0.32

German 2316 12,825 285 103 1219 -0.16 0.32

English 30,656 192, 983 199 48 1654 -0.19 0.33

Co-auth. AMiner 1,057,194 3,634,124 20 2 138 0.15 0.67

Description of StackExchange and co-authorship datasets with the number of nodes (n), number of edges

(m), mean (l), median (l1=2) and standard deviation (r) of the reputation scores, assortativity coefficient

(r) and modularity (Q)

3 http://faculty.nps.edu/volpano/.
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scientific collaboration (high degree), but their publications

have a low citation count.

3.3 Simulations

In our experiments, we simulate Naming Game extended

with the Probabilistic Meeting Rule. The simulation

framework is provided as an open source project.4 Our

experiments consist of the following steps:

1. We calculate the stratification factor b using the

approach from Sect. 2.3, getting the values for the

stratification factor that we need, to reflect a given

situation. For all networks, we define five percentages,

which correspond to the society forms defined earlier

in this paper and control the opinion flow from low- to

high-status agents (i.e., 100 %—egalitarian, 75, 50

and 25 %—ranked and 0 %— stratified society).

2. Each agent’s inventory is initialized with a fixed

number of three opinions (represented through num-

bers from 0 to 99). These opinions are selected

uniformly at random from a bag of opinions to ensure

that each opinion occurs with the same probability.

3. We once create meeting sequences and apply the same

sequences for the different values of stratification

factors. Initialization of agent inventories differs for

each meeting sequence, but same initializations are

used for all b. Hence, it is ensured that the randomness

between b is insignificant, due to the same meeting

sequence and same initialization for different b.

4. For each meeting sequence, depending on the network

size, we define the number of user interactions

(iterations) for the simulations. We perform 4 million

interactions for the largest StackExchange network

(English), 1 million interactions for the five other

StackExchange networks and 20 million interactions

for the co-authorship network.

5. We run 100 simulations per b and report the averaged

simulation results to account for statistical fluctuations

in the simulations.

6. During the simulations, we store important information

such as the appearance of agents as listeners/speakers, their

participation in overall interactions versus successful

meetings and the evolution of the agent’s inventory size.

7. We modify the initialization of the agents’ inventories

to differentiate between opinions assigned to low- and

high-status agents, respectively, in order to evaluate

the final agreement of agents.

4 Results and discussion

Figure 4 summarizes the results of our experiments by

depicting the agent’s inventory size as a function of the

simulation progress for the (a) English StackExchange and

(b) co-authorship networks.

4.1 Inventory size evolution of disassortative

networks

The simulation results among all StackExchange networks

are similar; thus, we show only the results of the largest

Fig. 3 Distribution of reputation scores. Correlation between the

distribution of reputation scores and node degrees for the English

StackExchange network (a) and co-authorship network (b). The

subplots on the right show the heterogenous distribution of reputation

scores in the both networks. The subplots on the top present the

heterogenous distribution of node degrees. In the middle, the scatter

plot of reputation scores versus node degrees is shown. The Pearson

correlation coefficient between degrees and reputation scores is 0.88

for the English StackExchange network. All other StackExchange

datasets have comparable distributions and correlation coefficients. In

the case of the co-authorship network, the Pearson correlation

coefficient between degrees and reputation scores is 0.54. As it can be

seen from the plot in b, it is evident that some authors with a high

citation count have a low degree (i.e., low number of co-authored

publications), but there are also cases of authors with a low citation

count and a high degree (i.e., they are active in scientific collabo-

ration, but their publications have a low citation count)

4 https://github.com/floriangeigl/reputation_networks.
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StackExchange network (i.e., English in Fig. 4a). In the

case of egalitarian society (b ¼ 0), the English network

converges to a single opinion. This is in line with the

previous experiments with the Naming Game—in networks

without a strong community structure, we always reach a

consensus. In the case of stratified society, we do not

observe convergence—consensus cannot be reached. This

seems slightly counterintuitive—an intuition would be that

consensus building would benefit from the presence of

agents with a high social status and their influence on

agents with a lower social status.

Finding 1: Opinion dynamics in disassortative col-
laboration networks are affected by the individual’s
social status. If, due to the social status, opinions
flow only in the high-to-low direction, the consensus
building process is disturbed and consensus cannot be
achieved, as opposed to when the status does not play
any role at all.

The simulation results for ranked societies indicate that

the impact of the social status on opinion dynamics is a

complex one. In all our StackExchange networks, we

observe the following situation. By starting at b ¼ 0 and

slowly increasing the stratification factor (note that higher

values of stratification factor successively reduce percent-

ages of meetings between low- and high-status agents), we

are at first still able to reach consensus. Moreover, the

convergence rate increases with a slightly increased strat-

ification factor (cf. Fig. 4a for e.g., ranked 75 %—black

line with triangle marker and ranked 50 %—blue line with

diamond marker). However, by further increasing the

stratification factor, we reach a tipping point after which a

further increase of the stratification factor results firstly in

slower convergence rates before we again reach a state of

no convergence at all (within e.g., stratified society).

Finding 2: The relation between the opinion dynam-
ics and the stratification factor of a society in disas-
sortative collaboration networks is intricate. Low val-
ues of stratification tend to favor consensus reaching
– in such societies, consensus is always reached at a
very fast convergence rate, which is higher than in
egalitarian societies. However, if the stratification fac-
tor becomes too large, the consensus reaching process
is hindered.

4.2 Inventory size evolution of assortative networks

Due to the large size of the co-authorship network, a much

higher number of interactions are needed in order for all

agent pairs to participate at least once in a meeting. For our

experiments, we used 20 million interactions, but if the

number of interactions is further increased the lines in

Fig. 4b will continue to drop toward 1. The co-authorship

(a) (b)

Fig. 4 Inventory size evolution averaged over 100 runs per b. Mean

values of the agent’s inventory size in relation to the number of

interactions for English StackExchange (a) and co-authorship

(b) networks. We compute five b for each network and control the

opinion flow from low- to high-status agents. The green lines in the

plots correspond to egalitarian societies (100 % opinion flow),

whereas the red lines represent the stratified societies (0 % opinion

flow). The lines in between (black, blue and magenta) depict the

ranked societies, in which the opinion flow from low- to high-status

agents is inhibited to 75, 50 and 25 %, respectively. For readability

reasons, error bars representing standard deviation of the mean

agent’s inventory size over 100 runs per b are not depicted in the

plots. In the English StackExchange network (a), in the case of an

egalitarian society a common opinion is reached and the convergence

rate is fast. In a stratified society, the opinions do not converge (the

mean number of opinions lies between 1 and 2). Ranked societies also

reach a common opinion with the highest convergence rate. Thus, for

the English network, the consensus building depends on the status but

in a non-obvious way, indicating that there is a specific setting at

which the influence of the social status reaches the optimal state. In

the case of co-authorship network in b, consensus is reached almost

independently from b, so external interventions (such as our

Probabilistic Meeting Rule) do not influence opinion convergence

rates (color figure online)
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network is characterized with a positive assortativity coef-

ficient that indicates that high-status agents are, on average,

connected to other high-status agents, and low-status agents

are connected to other low-status agents. The number of

connections between low- and high-status agents is low;

therefore, few meetings are taking place between these two

classes. Consensus is reached almost independently from b
(cf. Fig. 4b), so our Probabilistic Meeting Rule does not

benefit faster opinion convergence rates.

Finding 3: If a positive degree assortativity is evident
in the network (e.g., co-authorship network), consen-
sus is reached without external interventions.

4.3 Participation of agents in meetings across status

groups

To further analyze these findings, let us investigate in more

details the direction and intensity of opinions flow in our

disassortative and assortative networks. To that end, we

separate the agents into two classes: high (agents with the

status above 90th percentile) and low (agents below 90th

percentile) class. All reputation distributions are skewed to

right and resemble a heterogenous distribution, and the

division into classes results in a reputation boundary of for

example, 220 for English StackExchange network with all

agents having reputation above 220 belonging to the high

class and all agents below 220 belonging to the low class

(for comparison the highest reputation score in English

dataset is 105,678). All other StackExchange networks are

comparable to English, and our analysis produces similar

results. For that reason, we henceforth discuss only the

English network as an example of our disassortative net-

works. In the case of our assortative network (i.e., co-au-

thorship network), the highest reputation score is 15,758

and the reputation boundary for the 90th percentile is at 27,

indicating that all low-status agents have a reputation score

below 27, while high-status agents possess a reputation

score above 27.

An important question is what happens when agents

interact and how the Probabilistic Meeting Rule evaluates

depending on the classes of agents participating in a

meeting. In other words, we want to investigate the fraction

of interactions that turn into a successful meeting (which

consequently results in an opinion flow and increases the

likelihood of two agents agreeing on a single word). We

therefore classify each interaction according to the agent

classes into four possible pairs: (i) low-to-low, (ii) low-to-

high, (iii) high-to-low and (iv) high-to-high where the first

class corresponds to the speaker’s class and the second

corresponds to the listener class. Figure 5 depicts the

fractions of successful meetings among all interactions in

the English StackExchange and co-authorship networks for

three values of the stratification factor—egalitarian society

(corresponds to b ¼ 0), ranked society (up to 50 % opinion

flow is allowed between low- and high-status agents with

optimal values b ¼ 0:0001 for English and b ¼ 0:005 for

co-authorship network) and stratified society (e.g., b ¼ 1

and b ¼ 5). The only difference between plots in

(a) English (disassortative) and (b) co-authorship (assor-

tative) networks lies on the percentage of meetings taking

place among low-status agents and between low and high

agents. As previously mentioned, the number of physical

connections between low and high agents in the co-au-

thorship network is lower than in StackExchange networks,

and this results to the lower number of meetings taking

place between these two classes. Since, in the co-author-

ship network agents belonging to the same classes tend to

connect together, the number of meetings among low

agents (low-to-low pairs) is much higher compared with

StackExchange networks. The fraction of high-status

agents is equivalent for both networks; thus, the number of

meetings taking place between high-status agents is almost

the same.

In the case of stratified society (red bars with star tex-

ture), opinions flow without restrictions only in high-to-low

direction. Thus, the agents with a higher status can pass

over their opinions to the agents with a lower status. The

flow in the opposite direction is completely prohibited, and

therefore, agents with a lower status cannot influence the

opinions of the agents with a higher status. However, the

Probabilistic Meeting Rule in this case is so strict and

prohibitive that it greatly inhibits the opinion flow within

the agents of the same status (i.e., high-to-high and low-to-

low pairs). Because of the skewed nature of the reputation

distributions, the inhibition in the low-to-low group (which

is considerably larger than the high–high group) is more

severe—the agents with a lower social status cannot effi-

ciently exchange their opinions with each other and must

rely on the agents with a higher social status to inject

opinions into the low group by meeting each low agent

separately. Since there are few high-status and many low-

status agents, consensus is never reached.

On the other hand, in the case of egalitarian society

(green bars with circle texture), opinions flow without any

restrictions in all directions. This results in the convergence

of opinions and a rather fast convergence rate. However,

the convergence rate is slightly slower as compared to the

optimal case (ranked society). In our opinion, the expla-

nation for this phenomenon lies in the dynamics of the low-

to-high group meetings. Since everybody can impose her

opinion onto everybody else, low-status agents very often

change the opinions of high-status agents. Thus, low-status

agents increase the variance in the inventories of high-
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status agents, and they need additional meetings to elimi-

nate these opinions. This results in slower convergence

rates.

A particular dynamics of low-to-high meetings also

explains faster convergence rates in ranked societies (blue

bars with line texture). In this case, the opinion flow from

the agents of low status to the agents of high status is

strongly slowed down. Therefore, the disturbances in the

opinions of high-status agents are not substantial any more.

On the other hand, as opposed to the stratified society, the

opinion flow within the low-to-low group is not impaired at

all. Thus, the injected opinions from the high-status agents

can be diffused among the low-status agents themselves

without need to address each low-status agent separately.

This, combined with the reduced disturbances flowing from

low- to high-status agents, results in optimal opinion con-

vergence rates.

Finding 4: The optimal convergence of opinions is
achieved when low status agents can exchange their
opinions among themselves without any restrictions.
In addition, there must be a barrier that prohibits low
status agents to inflict their opinions on high status
agents so that disturbances in the opinions of high
status agents are minimized.

4.4 Agents’ final agreement

In order to gain insights into the final agreement of indi-

viduals, we investigated each of the single opinions that

agents agreed on. So, we modified the initialization of the

agents’ inventories to differentiate between opinions

assigned to low- and high-status agents, respectively. After

rerunning the experiments and evaluating the results, we

found out that for very low stratification factor (corre-

spond to higher percentages of meetings taking place

between low- and high-status agents, e.g., egalitarian,

ranked 75 % and ranked 50 % in Fig. 4) the final agree-

ment of agents is mostly on the opinion of a low-status

agent, whereas for higher stratification factor (e.g.,

ranked 25 % and stratified in Fig. 4) the opinion on which

all agents agreed on is usually one of a high-status agent.

This is in line with the fact that for very low stratification

factor the intensity of the communication from low- to

high-status agents is high, so the probability that an opinion

of a low-status agent is the final opinion on which all

agents agreed on is high. By increasing beta, we decrease

the probability of a communication taking place between

low and high agents. Thus, the final agreement is mostly on

the opinion of a high-status agent.

(a) (b)

Fig. 5 Participation of agents in meetings across status groups. The

percentage of interactions resulting in meetings as a function of

reputation classes in the English StackExchange (a) and co-authorship
network (b). The high class comprises agents with the status above

90th percentile and the low class all other agents. In the stratified so-

ciety (red bars with star texture), a common opinion cannot be

reached because the meeting rule is so strict that even communica-

tions between low agents (low-to-low pairs) are severely impaired. In

the egalitarian society (green bars with circle texture), the conver-

gence is slower because low-status agents disturb high-status agents

by inflicting their opinion upon them (low-to-high pairs). In the

ranked society (blue bars with line texture), the optimal convergence

is achieved because low-status agents can diffuse opinions among

themselves (low-to-low pairs). At the same time, since the commu-

nications between low- and high-status agents are inhibited (low-to-

high pairs), low-status agents’ opinions cannot disturb those of high-

status agents. The only difference between the plots in a and b lies on

the percentage of meetings among low-status agents and between

low- and high-status agents. Since in the co-authorship (assortative)

network, agents belonging to the similar classes tend to connect

together, the number of meetings between low-to-low pairs is higher

than the number of meetings between low-to-high and high-to-low

pairs (color figure online)
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Finding 5: The final agreement of agents is mostly
on the opinion of a low status agent, if the opinion
flow from low to high agents is not disturbed at all,
or if it is disturbed up to 50%. By further prohibit-
ing the opinion flow from low to high status agents,
the winning opinion, on which all agents agree on, is
usually one of a high status agent.

5 Analysis of network correlations

In this section, we study how network structure and, in

particular, the correlation of structure and status affect the

process of consensus reaching in collaboration networks by

constructing disassortative and assortative synthetic

networks.

5.1 Decorrelating networks

Our aim is to study in detail how the network structure and,

in particular, the correlation of structure and status affect

the process of consensus reaching in our networks. Obvi-

ously, the connections between hubs and other nodes play a

crucial role, as well as the distribution of degree sequence

and the position of high-reputation nodes in the network.

For this study, we generated specific synthetic networks,

whereas in each case, only one particular property of

interest is preserved while others are eliminated. This way,

in each experiment, we can assess the influence of a single

property on the overall opinion dynamics process.

5.1.1 Degree and status correlation

In order to analyze the role of network structure and

especially the role of the degree assortativity on the process

of opinion spreading, we generate three synthetic networks

based on the original collaboration networks introduced in

Sect. 3. All synthetic networks have the same number of

nodes n and edges m as the empirical networks, but we

modify the connections between nodes and the correlation

between degree and reputation as follows:

Random

network

Here, we rewire the edges uniformly at

random. This means that all nodes have

equal probability of getting selected for

creating an edge. The resulting network

corresponds to the Erd}os–Rényi model

proposed in Erdös and Rényi (1959), and

its node degree distribution follows a

homogeneous Poisson distribution. With

this network, we eliminate the degree

sequence and the correlation with

reputations.

Configuration

model

In this case, the edges from the original

network are randomly rewired, but the

degree sequence remains the same

(Bender and Canfield 1978; Molloy and

Reed 1995). An uncorrelated rewiring

minimizes the bias for connections in a

network as all nodes are randomly

rewired to different nodes than in the

original network. Since the degree

sequence is not modified, this results in a

heterogeneous degree distribution with

the same slope as in the original network.

With this network, we eliminate the

correlation between nodes over the edges,

for example, we eliminate the

correlations caused by the friendship

relations.

Shuffled

reputations

Finally, we do not modify the network

structure itself, but shuffle the reputation

of nodes randomly. In the resulting

network, the node degrees are

decorrelated with reputations.

For all the experiments in the synthetic networks, we use as

basis the English StackExchange and the co-authorship data-

sets and we follow the experimental setup described in Sect. 3.

5.2 Results of decorrelated networks

Our experimental results reveal some interesting insights.

In Fig. 6, we show the evolution of agent’s inventory size

during the interactions, averaged over 100 runs. To better

understand the variation of the stochastic processes per-

formed throughout our simulations, we calculated standard

deviations over 100 runs per b, but for readability reasons,

we removed error bars from the plots. Typical standard

deviation values range between 0.48 (e.g., English shuffled

reputations network) and 0.66 (English Erd}os–Rényi net-

work). Table 2 summarizes the results of our experiments

both on empirical and decorrelated networks.

5.2.1 Disassortative networks

We recall the results of the original English network once

more for an easier comparison with the results with syn-

thetic networks. The simulation results with the English

StackExchange original networks show that the

ranked societies reach a common opinion with the highest

convergence rate, higher than in egalitarian societies (e.g.,

ranked 50 % compared to egalitarian in Fig. 4), whereas

in a stratified society consensus is not reached at all.

The simulation results for the English Erd}os–Rényi
network differ from the original network (see Fig. 6a).
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Except for stratified society, for which consensus is not

reached within the limit of interactions, for other societies,

the process of consensus reaching is slowed down. The

fastest convergence is achieved with b ¼ 0, respectively, in

egalitarian societies. This result shows that the conver-

gence rate is highly dependent on the existence of hubs in a

network. In an Erd}os–Rényi network, the high-status

agents are not hubs any more since their degrees are much

smaller and therefore they cannot spread their opinions to

low-status agents as quickly as in the original network.

We find a further evidence for this behavior in the

English configuration model in which the calculated strat-

ification factors and the evolution of agent’s inventory size

are identical to the original network; thus, the

figure presenting the results is not included. In this exam-

ple, we keep the same degree sequence but rewire the

edges in the English StackExchange network. Since we

now keep the hubs and the degree–status correlation, we do

not disturb the consensus reaching process. We simply

reconnect the low-degree/low-status agents to different

high-degree/high-status agents. This result also shows that

additional external correlations such as friendship/collab-

oration correlations do not influence the consensus reach-

ing. Mainly, it is the degree/status correlation that provides

support for achieving the consensus.

In the English network with shuffled reputations

(Fig. 6b), the estimated stratification factors that define the

five societies are identical to the English Erd}os–Rényi

(a) (b)

(c) (d)

Fig. 6 Decorrelating networks. Mean values of the agent’s inventory

size in relation to the number of interactions for English Erd}os–Rényi
(a), English shuffled reputations (b), co-authorship Erd}os–Rényi
(c) and co-authorship configuration model (d) networks. The process

of consensus building varies among networks. In the English Erd}os–
Rényi network, the process of consensus reaching is slowed down,

whereas in the English shuffled reputations, the opinion convergence

rate is faster (agents agree to a common opinion almost independently

from b). In the English configuration model, opinions converge with

the highest rates in the case of ranked societies (e.g., ranked 50 %),

which corresponds to the English original network; thus, the plot is

omitted. In the co-authorship Erd}os–Rényi and configuration model,

the consensus building process is slowed down compared with the co-

authorship original network. The simulation results of the co-

authorship shuffled reputations network are identical with the original

co-authorship network; consequently, it is not included in the figure
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network. However, agents agree to a common opinion

almost independently from the society form, except for the

stratified society. The convergence rate is faster than in

English Erd}os–Rényi network. This outcome indicates that

in networks with heterogenous degree distribution and

uncorrelated reputations of users, consensus is reached

automatically without need for external interventions.

Since, however, in most of empirical collaboration net-

works degree strongly correlates with user reputation, we

need another mechanism that can positively influence

opinion dynamics. That mechanism includes controlling

the communication between low- and high-status nodes

through the stratification factor.

5.2.2 Assortative networks

Figure 6c shows the simulation results of the co-authorship

Erd}os–Rényi network, in which the hubs are removed. The

calculated b differs from the empirical co-authorship net-

work and the consensus reaching process is slowed down in

this case. This outcome confirms once more that the

presence of hubs is crucial for the consensus reaching

process.

Applying the configuration model to the co-authorship

network while keeping the degree sequence changes the

connection patterns between nodes. So, rewiring the edges

reduces the number of high-to-high and low-to-low con-

nections, simultaneously increasing the number of high-to-

low links. This results in a decreased assortativity. In fact,

in the configuration model, we measure the assortativity

coefficient of 0.0001, whereas in the original co-authorship

network that factor is 0.15. This is shown also in Fig. 6d,

where the opinion convergence rates are slowed down.

Shuffling the reputations in the co-authorship network

does not impact the simulation results as they are identical

with the empirical co-authorship network. Thus, the

respective plot is omitted from Fig. 6.

5.2.3 Distribution of status differences

To further quantify our findings, we investigated the dis-

tribution of status differences between two connected

nodes in our networks. The differences are calculated for

two neighboring nodes if one of the nodes is a low and the

other one is a high-status node (defined by the 90th per-

centile). The results for disassortative and assortative net-

works are depicted in Fig. 7.

In the networks with a heterogenous degree distribution,

a negative degree assortativity and a strong correlation

between degree and status (red and green lines in Fig. 7a),

there are many connections from low- to high-status nodes

and therefore we frequently observe high negative differ-

ences. In other words, there are many potential meetings

between low and high agents that given that they take place

often can disturb the high-status agents and consequently

the consensus reaching process. Thus, to reduce the number

of meetings that take place we need to apply a mechanism

such as our Probabilistic Meeting Rule and inhibit the

opinion flow in the low-to-high direction.

In the case of the English Erd}os–Rényi network (blue

line in Fig. 7a), there are lower differences between low-

and high-status agents (the majority of differences is close

to 0), due to the lower number of connections between

these two groups of agents. Thus, not many of the meetings

that take place are high-to-low agent meetings and addi-

tionally with our Probabilistic Meeting Rule, we are also

Table 2 Summary of our findings

Network Type Egalitarian Ranked 75 % Ranked 50 % Ranked 25 % Stratified

Disassortative English

StackExch.

Empirical Converge Converge Fastest

convergence

No converge No converge

Erd}os–Rényi Fastest

convergence

Slowed down Slowed down Slowed down no converge

Configuration

model

Converge Converge Fastest

convergence

No converge No converge

Shuffled

reputations

Converge Converge Converge Converge No converge

Assortative co-authorship Empirical Converge Converge Converge Converge Converge

Erd}os–Rényi Slowed down Slowed down Slowed down Slowed down Slowed

down

Configuration

model

Slowed down Slowed down Slowed down Slowed down Slowed

down

Shuffled

reputations

Converge Converge Converge Converge Converge

Table summarizing the results of our work
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prohibiting the opinion flow from low- to low-status

agents. Consequently, this slows down the consensus

reaching process.

In the English shuffled reputation network, the number

of connections between low- and high-status agents is the

same as in the original network, but the differences

between agents’ statuses are lower (with only one peak

close to 0, thus, it is omitted in Fig. 7a), which speeds up

the consensus reaching even without external interventions

such as Probabilistic Meeting Rule.

In Fig. 7b, it is shown that, in general, there are lower

differences between agents’ statuses in the co-authorship

empirical network and synthetic networks derived from it,

which explains the fact that in co-authorship original net-

work consensus is reached fast and independent from b.
The opinion convergence rates are slowed down only if the

presence of hubs is lower or if the degree assortativity is

decreased.

Finding 6: A common opinion is adopted in collab-
oration networks with heterogenous degree distribu-
tion. Hubs are key to reaching consensus since they
can distribute a single common opinion to a high
number of other nodes. If degree and status are not
correlated or if a positive degree assortativity is ev-
ident in the network (co-authorship network), con-
sensus is reached quickly and without external in-
terventions. In disassortative networks, where degree
strongly correlates with status (StackExchange em-
pirical networks), this correlation slows down the con-
vergence rate, making it necessary to take actions such
as applying the Probabilistic Meeting Rule to insert
a social barrier between low and high status agents.

6 Related work

At present, we identify three main lines of research related

to our work: opinion dynamics, social status theory and

naming game.

6.1 Opinion dynamics

Opinion dynamics is a process characterized with a group

of individuals reaching a consensus (i.e., the majority of a

group share the same opinion). In opinion dynamics, the

focus is on modeling the opinion state of an individual in

particular and a population in general. Opinion dynamics

has been tackled in the past in the context of statistical

physics (Castellano et al. 2009; Iniguez et al. 2014). As

discussed in Castellano et al. (2009), if opinion dynamics

is viewed from a perspective of statistical physics, an

individual is analogous to a particle with properties that

may or may not change over a period of time. Thus, the

social process of interaction among individuals can be

designed as a mathematical model that represents a change

in the local and global state of an individual and a group.

One of the examples of such a process is the Naming Game

model, a variant of which we are using in our work, that

models how individuals behave during a meeting and

exchange their opinions. In our experiments, the meeting

(a)

(b)

Fig. 7 Kernel density estimation of the distribution of status

differences between low and high agents. Disassortative networks

are shown in a and assortative networks in b. The distribution of

agents’ status differences in the English StackExchange and config-

uration model networks in a are almost identical; thus, the blue and

the red lines overlap. Due to many connections from low- to high-

status agents, we frequently see high negative differences. In the

English Erd}os–Rényi network (blue line), the majority of differences

between low- and high-status agents is close to 0, because of the

lower number of connections between these two groups of agents.

The English shuffled reputations network is not shown in the plot,

because of very-low-status differences with only one peak around 0.

In b are shown lower differences between agents’ statuses in the co-

authorship empirical network and synthetic networks (color

figure online)
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process is further enhanced by taking reputation scores of

individuals into account. Constraining the system to favor

high-reputation nodes resulted in reaching consensus later

as compared to an unconstrained model.

In a different context opinion, dynamics is studied in

Blondel et al. (2010), Hegselmann and Krause (2002),

Krause (2011), Lorenz (2007) and Muller (2006), where an

opinion is represented as a real number and a classical

approach of individual opinion formation involves aver-

aging over opinions of other agents in the system. In such a

setting, a consensus is considered to be reached if all the

agents in the system agree to the same value of opinion.

The process of opinion dynamics is studied in Krause

(2011) from both the local and global perspective. They

defined the opinion formation process as local when a user

takes into account only the nearest neighbors, whereas in

the case of global opinion formation the user takes into

account all other agents in the network. The process of

opinion formation is studied in Blondel et al. (2010) by

means of a continuous time multi-agent system. In their

work, they proved that opinion converge to a set of clus-

ters, where agents in each of the cluster share a common

value. Lorenz (2007) studied a continuous model of opin-

ion dynamics under bounded condition. The bounded

condition restricts users to interact with their peers only if

they are close to each other. Such a process of opinion

dynamics leads to formation of clusters with characteristic

location and size patterns. They found the drifting phe-

nomenon in composition of cluster in case of heteroge-

neous bounds. Muller (2006) studied the process of internal

organization within communities of practice and how such

a process leads to some members obtaining a leadership

status. They developed a model to depict the self-orga-

nizing process and found that leaders are the members who

correspond to higher level of activity in the community.

6.2 Social status theory

Research on how the position and status of a node influence

a network is mostly carried out in the context of network

exchange theory (Markovsky et al. 1993; Walker et al.

2000; Willer 1999). This theory states that connections and

a position in a network lead to a power condition that is

based on how the nodes are connected and which position

they take in the network (Walker et al. 2000). For example,

in Markovsky et al. (1993), researchers differentiate

between weak and strong powers network in terms of node

positions and network properties. The authors give a the-

oretical extension to the network exchange theory to

explain why in sparsely connected networks a stronger

power effect is observed than in densely connected net-

works. They found that in densely connected networks,

weak position nodes have an advantage since they have a

higher connectivity, which enables them to short circuit the

structural advantages of strong position nodes. This is

related to our work, as we concentrate on investigating how

the reputation of a node in a network affects the spread of

opinion that leads to establishing consensus in the network.

Also, we define various classes of nodes based on reputa-

tion and determined how their interaction affects their

overall process of consensus building.

6.3 Naming Game

The Naming Game has been introduced in the context of

linguistics (Dall’Asta et al. 2006b) and the emergence of a

shared vocabulary among agents (Baronchelli et al. 2006b)

with the aim to demonstrate how autonomous agents can

achieve a global agreement through pairwise communica-

tions without central coordination (Zhang et al. 2014).

With that regard, we present a selection of variations of the

Naming Game that are relevant to our work.

Similarly to our approach, the work of Brigatti (2008)

describes a variation of the Naming Game that incorporates

the agents’ reputation scores. In the beginning, reputation

is randomly distributed (Gaussian distribution) among the

agents. Successful communication increases the agents’

reputation, and during each iteration, the agent with a

higher reputation score acts as a teacher and the one with

the lower score as a learner. The main difference from our

work is that in Brigatti (2008), they use synthetic data for

the simulations and that the assigned reputation scores are

random numbers that change during iterations. In our work,

we employed empirical collaboration networks from

StackExchange with reputation scores that were assigned

by the community. As opposed to the work of Brigatti

(2008) where there is an open-ended game with unlimited

number of words, the inventory of our agents consists of

predefined sets of three opinions.

Other examples for the Naming Game variations include

the works of Liu et al. (2011), who studied the impact of

spatial structures (e.g., geographical distances) have on

meetings between individuals in a network, and Yang et al.

(2008), who proposed a Naming Game that follows an

asymmetric negotiation strategy and investigated the

influence of hub effects on the agreement dynamics with

specific focus on how quickly consensus could be

achieved. Each agent in the network is assigned a weight

defined by the agent’s degree and a tuneable parameter a.
During iteration, two nodes are randomly selected and

based on their degree and the configuration of the param-

eter a, they are either the speaker or the listener (i.e., if

a[ 0, high-degree agents have more chances to be

speakers and vice versa). This way, the dynamics of the

game can be investigated in light of the varying influence

of high-degree agents. Our work is somewhat related as we
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also use a parameterized probability function to define the

probability of a meeting taking place between two nodes,

in our case depending on their reputation score. The main

difference to our work is that agents’ selection is unbiased

and empirical data with explicitly provided reputation

scores are used.

The diffusion of opinions across networks and the

potential of reaching consensus are strongly influenced by

the availability of communities and, specifically, by the

presence of strong community boundaries (Lu et al. 2009).

To investigate this effect, Lu et al. (2009) assigned a group

of nodes in a network as a committed fraction, that is,

nodes that are not influenced by other nodes in a network

and do not ever change their opinion. In our dataset,

however, no strong community structures are present.

7 Conclusion and future work

Understanding opinion dynamics and how consensus is

reached in social networks has been an open and complex

challenge in our community for years. In this work, we

addressed a subproblem related to this challenge by

investigating a specific case of collaboration networks in

which individual nodes have a certain social status.

To that end, we presented an extension (Probabilistic

Meeting Rule) to the standard Naming Game model of

opinion dynamics. We evaluated our approach on six large

empirical collaboration networks, as well as on three

specifically created synthetic networks, which reflected the

characteristics of the empiric networks. In this work, we

provided a computational approach for the general esti-

mation of the stratification factor of our Probabilistic

Meeting Rule and we analyzed the role network structure

plays in the process of consensus building. These studies

constitute the methodological contribution of our work to

the field of opinion dynamics. Additionally, we investi-

gated various real-world scenarios such as the emergence

and disappearance of social classes in collaboration net-

works. From the empirical point of view, our investigations

revealed insights about the influence of social status on the

diffusion of opinions. Our main finding indicates that social

status strongly influences the opinion dynamics in a com-

plex and intricate way. More specifically, weakly stratified

societies reach consensus at the highest convergence rate,

whereas completely stratified societies do not reach con-

sensus at all. The most important issue in this process is

related to low-status agents and how their communication

is controlled. In particular, the optimal convergence is

achieved when (i) low-status agents are allowed to freely

exchange opinions between themselves (since this reduces

the need for high-status agents to interact with low-status

agents) and (ii) simultaneously there is a communication

barrier reducing the number of interactions of low-status

agents toward high-status agents (since this reduces the

variance in opinions of high-status agents). Furthermore,

our investigations on the role of the network structure

reveal that hubs are in general crucial to reach consensus,

since they can spread a single common opinion to a high

number of nodes. In assortative networks, in which con-

nections between low and high agents are very rare,

external interventions do not benefit faster convergence

rates. A similar situation is observed in disassortative

networks when degree is not correlated with a user’s status.

If there is a strong correlation between status and degree in

a disassortative network, this slows down the convergence

rate, making it necessary to take actions such as applying

the Probabilistic Meeting Rule to disturb the communica-

tion between low- and high-status users.

7.1 Limitations

In our opinion, our work has the following limitations.

Firstly, we represent social status with a single number—

for certain scenarios this representation may be too sim-

plistic. For example, people often play different roles in

social networks and a non-simple interplay between the

roles and status may exist. Secondly, a more finely grained

classification of agents into various groups (e.g., low, mid

and high groups or even finer divisions) may shed more

light on the opinion dynamics. Finally, in our work, we

consider only static snapshots of networks and reputation

scores. However, not only opinions but also networks are

dynamic, as new agents may arrive to the network, new

edges may form and inactive edges may disappear from the

network. Moreover, reputation itself is very dynamic and

depends on the agent’s activity and the current perception

of an agent by her peers.

7.2 Future work

In our future work, we plan to address some of the limi-

tations of our current work and extend our approach and

experiments to other scenarios. For example, one interest-

ing avenue for further research are the networks with a

strong community structure. As communities tend to slow

down the consensus reaching process, it would be inter-

esting to investigate how status and/or network structure

can be adjusted to support the process. Apart from social

status, the influence of trust is of utmost importance in

various social systems and in particular in social media.

Thus, adapting the presented approach to analyzing how

trust relates to opinion dynamics is another promising

research direction for the future.
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