
Machine Learning Techniques for Automatically
Extracting Contextual Information from

Scientific Publications

Stefan Klampfl and Roman Kern

Know-Center GmbH
Inffeldgasse 13, 8010 Graz, Austria
{sklampfl,rkern}@know-center.at

Abstract. Scholarly publishing increasingly requires automated sys-
tems that semantically enrich documents in order to support manage-
ment and quality assessment of scientific output. However, contextual
information, such as the authors’ affiliations, references, and funding
agencies, is typically hidden within PDF files. To access this informa-
tion we have developed a processing pipeline that analyses the structure
of a PDF document incorporating a diverse set of machine learning tech-
niques. First, unsupervised learning is used to extract contiguous text
blocks from the raw character stream as the basic logical units of the
article. Next, supervised learning is employed to classify blocks into dif-
ferent meta-data categories, including authors and affiliations. Then, a
set of heuristics are applied to detect the reference section at the end of
the paper and segment it into individual reference strings. Sequence clas-
sification is then utilised to categorise the tokens of individual references
to obtain information such as the journal and the year of the reference.
Finally, we make use of named entity recognition techniques to extract
references to research grants, funding agencies, and EU projects. Our
system is modular in nature. Some parts rely on models learnt on train-
ing data, and the overall performance scales with the quality of these
data sets.

Keywords: PDF extraction, machine learning, named entity recogni-
tion

1 Introduction

The constant growth of the volume of scholarly publications makes it increasingly
difficult to manage collections of scientific literature and to assess the quality of
scientific output. It poses the need for automated processing systems that se-
mantically enrich documents with information that support these tasks. One
important aspect of scientific publications is that they are not isolated units,
but originate in a specific context. In fact, several factors contribute to the de-
velopment of a paper, for example, the authors’ affiliations, funding information,
or the venue or journal where a paper was presented or published. Also the list



2 Stefan Klampfl and Roman Kern

Fig. 1. Overview of the overall architecture of our system, most of which builds on our
previous work. Given a scientific article in PDF, the raw character stream obtained via
PDFBox is clustered into contiguous text blocks [6], which serve as the basis for the
following stages: the extraction of author and affiliation meta-data [4], the extraction
of references [7], and the extraction of funding information [8].

of referenced papers constitutes important contextual information to take into
account in order to assess its credibility and relevance.

To that end, the Semantic Publishing Challenge 20151 (SemPub 2015) asked
participants to automatically annotate these elements within a set of input doc-
uments. This paper describes our contribution to Task 2 of this challenge, which
focuses on the extraction of contextual information from scientific publications
given as PDF files. PDF is the most common format for scholarly articles, how-
ever, it is optimised for presentation, but lacks structural information. It only
contains information about individual characters and their position on the page,
and this information might additionally be noisy. Intelligent and flexible algo-
rithms are required that extract words with correct boundaries in the right order
and group these words to lines and contiguous text blocks, which might then be
classified to contain a specific type of information. Furthermore, these algorithms
have to deal with the large variety of layouts of scholarly articles.

We have developed a system that exploits the flexibility of a variety of su-
pervised and unsupervised machine learning techniques to deal with these chal-
lenges. It builds upon the open-source Apache PDFBox2 library and processes
a given PDF file in a number of individual processing modules (see Figure 1).
First, it uses unsupervised learning (clustering) to analyse the physical layout
of a scientific article by extracting contiguous text blocks, which we consider as
the basic building blocks of a PDF document (section 2). Next, these text blocks
on the first page of the article are classified into different meta-data categories,
including authors and affiliations, using supervised learning (section 3). Then,
heuristics are applied to detect the reference section at the end of the paper
and to segment it into individual reference strings. The tokens of these reference

1 https://github.com/ceurws/lod/wiki/SemPub2015
2 http://pdfbox.apache.org/



Machine Learning for Extracting Contextual Information 3

strings are further categorised using sequence classification to obtain informa-
tion such as the journal and the year of the reference (section 4). Finally, we use
basic named entity recognition techniques to extract information about research
grants, funding agencies, and EU projects (section 5). Parts of our system have
already been described in [4, 7, 6, 5, 8]. A demonstration of the system can be
accessed online3, and the source code is available under an open source license4.

2 Unsupervised extraction of contiguous text blocks as
basic units of a PDF

Before we can extract contextual information from a scholarly article we have
to process the low-level character stream of the PDF file to obtain logical units
such as words or lines. The stream obtained through PDFBox consists of a list
of characters, their bounding boxes (x and y position on the page, as well as
their width and height), and information about their font. In our system, we
consider contiguous text blocks as the basic building blocks of a PDF document.
Each block consists of several lines, each of which is composed of a number of
words, which themselves consist of multiple characters. The main challenge here
is that the information provided by PDFBox might be unreliable: for example,
height and width information might be slightly wrong, or information about the
font of some characters might be missing. We therefore require algorithms which
are flexible enough to deal at the same time with both this noisy data and the
variety of layouts of scientific publications.

We use methods from unsupervised machine learning, in particular cluster-
ing, to to iteratively combine individual characters to words, lines, and blocks
of text in a bottom-up manner. We employ a sequence of alternating Merge and
Split steps: Each Merge step is implemented by hierarchical agglomerative clus-
tering (HAC) with Euclidean distance measure and Single Linkage. In the first
Merge step individual characters are merged to words: pairs of characters with
increasing distance to each other are combined into clusters, until a maximum
distance threshold is reached. Since the resulting clusters of characters might
now encompass multiple words, a Split step is incorporated in the form of stan-
dard k-means clustering on the horizontal distances between characters (k = 2).
Ideally, this partitions the spaces between characters into spaces between words
and spaces within words, yielding the final set of words. This Split step can also
be understood as an outlier detection which removes too large inter-character
distances from the words obtained in the Merge step.

Another pair of Merge and Split steps is used to combine words to lines and
lines to blocks. First words are merged to lines by combining pairs of words with
increasing Euclidean distance to each other. This typically yields lines spanning
multiple columns, which is resolved in the Split step that separates word spaces
within columns from inter-column spaces. Finally, lines are merged to blocks,

3 http://code-annotator.know-center.at
4 https://svn.know-center.tugraz.at/opensource/projects/code/trunk



4 Stefan Klampfl and Roman Kern

again by first combining them until a maximum distance threshold is reached,
and then by splitting the resulting clusters at large vertical distances.

PDFBox already uses its own mechanisms for detecting word, line, and para-
graph boundaries for the conversion to plain text. These methods are based on
simple heuristics depending on the relative position of neighbouring characters.
However, we decided to build our own generic text block extractor and did not
reuse existing approaches provided by PDF parsing libraries, mainly because
we want to leave open the possibility to apply our system also to other input
formats, for example the output of OCR software. Another reason for not using
PDFBox for the extraction of text blocks is that it does not provide any ge-
ometric information about these compound objects. It might also be desirable
to extend our block extractor by incorporating font information or special rules
such as the splitting of words at superscripts or subscripts.

The result of this stage is a hierarchical data structure containing the geo-
metrical information of blocks, lines, and words, as well as the reading order of
blocks within the document [1]. Most importantly, this block structure effectively
provides a segmentation of the text into single columns, a fact that is partic-
ularly helpful for extracting contextual information from references. We have
presented a more detailed description of our algorithms as well as an evaluation
of the block extraction in [6].

3 Supervised classification of author and affiliation
meta-data

Major factors that directly contribute to the origin and development of a paper
are the research institutions the authors of a scientific article are affiliated to,
the venue where a paper was presented or the journal in which it was published.
These meta-data thus constitute an important aspect of the context in which
the paper was written.

For the extraction of meta-data from scientific articles we employed super-
vised machine learning techniques which use labelled training examples to learn
a classification scheme for the individual text elements of an article. This stage
directly builds upon the output of the text block extraction stage and consists of
two phases. We first classify the text blocks extracted from the first page of the
article into multiple meta-data categories: apart from author related informa-
tion (names, e-mail addresses, and affiliations) we also categorise the title (and
optional subtitle) of the article, the name of the journal, conference, or venue,
abstract and keywords. For author-related blocks we then re-apply the classifi-
cation to the tokens of these blocks in order to obtain given names, surnames,
and affiliations.

As a supervised learning mechanism we use Maximum Entropy (ME) [2]
combined with Beam Search [10], which incorporates sequential information by
taking into account the classification results of preceding instances in order to
avoid unlikely label sequences. Both algorithms are included in the open-source



Machine Learning for Extracting Contextual Information 5

Fig. 2. Snapshot of a sample paper with text blocks on the first page classified into
different meta-data categories, indicated by different colours, including journal, title,
authors, and affiliations. The classification is further applied to the tokens of the author
and affiliation block, yielding given names, surnames, and emails.

library OpenNLP5. The features used for classification are derived from the
layout, the formatting, the words within and around a text block, and com-
mon name lists for detecting author names. Since the classification method is
restricted to binary features, this information needs to be mapped to binary
values.

We have called this the TeamBeam algorithm for extracting meta-data in-
formation. It has been described and evaluated in [4], where it was shown to
achieve a satisfactory performance on a number of different datasets. Figure 2
shows a snapshot from a sample paper from the biomedical domain where title,
author names, emails, and affiliations are correctly classified.

3.1 Classification of text blocks

In the first phase the text blocks are classified into the following labels: Title,
Subtitle, Journal, Abstract, Keywords, Author, E-Mail, Affiliation, Author-Mixed
and Other. Author related information might appear in separate text blocks, or
different meta-data types might be combined in a single block (such as e-mail
addresses and affiliations). In the latter case, this block would be labelled with
Author-Mixed. The Other class is assigned to all blocks without any meta-data
information.

The following features are generated for the text block classification:

– Language model features For each text block type, a language model is
calculated by counting the frequency of words within this block type in the
training set. This is used to generate features encoding the most probable
block type for the words within the block.

– Layout features describe the position of a single block within a page:
isFirstBlock, isLastBlock, isLeftHalf, isRightHalf, isTopHalf, isBottomHalf,
isRight, isLeft, isTop, isBottom, isCenter.

5 http://opennlp.apache.org



6 Stefan Klampfl and Roman Kern

– Formatting features encode font and text flow: isBigFont, isBiggerFont,
isSmallFont, isSmallerFont, isLeftAligned, isRightAligned. Big/Small and
Bigger/Smaller are set if the deviation of the font size from the average
font size exceeds ±1 SD and ±1.5 SD, respectively.

– Dictionary features consist of features containsGivenName and contains-
Surname, which are set depending on whether the block contains a word
found in one of the common name lists: a list of 7,133 common first names
taken from the GATE project6, and a list of 88,799 most common surnames
of the US Census7.

– Heuristic features contains simple features such as containsEMail, con-
tainsAtChar, containsDigits, containsPunctuation, containsDOI, and con-
tainsISSN.

– Term features include all words within a block, as well as the first and last
word of neighbouring blocks.

3.2 Classification of tokens

In the second phase of meta-data extraction the text blocks labelled with one of
the author related types are further processed. The individual tokens of these text
blocks are further classified into the following labels: GivenName, MiddleName,
Surname, Index, Separator, E-Mail, Affiliation-Start, Affiliation, and Other. Be-
cause affiliations are often written in a sequence and often start with a common
word, such as “University” or “Institute”, affiliation tokens are split into two
parts, one for the initial word of an affiliation. The Index class is used for special
characters linking authors to their affiliation and/or e-mail address, typically an
asterisk or superscript numbers. Multiple index characters are separated by a
token labelled as Separator, usually a comma.

The following features are generated for the token classification:

– Language model features reflect the relative frequencies of words: isCom-
monWord (> 0.1), isInfrequentWord (< 0.01), isRareWord (< 0.001).

– Layout features encode the token’s position: isFirstInLine, isFirst, isLast.
– Formatting features include the font size compared to the average font

size (isBigger, isSmaller), as well as the number of characters within the
token.

– Dictionary features are set if the token occurs in one of the common name
lists (containsGivenName, containsSurname).

– Heuristic features are reused from the block classification, including a
feature for initials (upper-case character followed by a dot).

– Term features include a normalized version of the token itself as a feature.

4 Detection, segmentation, and tokenisation of references

Another contextual dimension to take into account in order to assess the cred-
ibility and relevance of a paper is the network of related papers, for instance,

6 http://gate.ac.uk
7 http://www.census.gov/genealogy/www/index.html



Machine Learning for Extracting Contextual Information 7

Fig. 3. Snapshot of the beginning of the reference section of a sample paper (left) and
extracted reference strings with classified tokens (right). The extraction of references
involves the detection of the reference section within the paper and the segmentation
of individual reference strings (bullet points). Individual tokens of the reference strings
are classified into different categories (indicated by different colours), including given
names and surnames of authors, titles, journals, years, volumes, and pages.

those that cite or are cited by a given one, or those that address similar issues.
Researchers often use this information to search for literature that is relevant
for their own work or for a specific field of research. Here, we focus on the in-
formation contained in the reference section, a section scientific articles usually
conclude with and which acknowledges relevant and related work in the form of
a list of citations or references.

The automated extraction of this type of contextual information requires the
detection of the reference section within a paper, the segmentation of individual
reference strings, and the labelling of single tokens within each string as to
which field they belong (e.g., author, title, year, journal). We use heuristics to
detect and segment references within a scientific article, and supervised sequence
classification to assign labels to the tokens within each reference string. This
part of our system has been described in [7], where we have shown that the
extension of ParsCit [3], an existing state-of-the-art reference extraction system,
with additional formatting and layout information improves the extraction of
references. In particular we are able to correctly segment references with an F1
of about 0.94 and detect most reference token types with an F1 of at least 0.9
on a dataset from PubMed8. Figure 3 shows samples of extracted references,
including segmented reference strings and categorised tokens, from an example
paper.

4.1 Reference line extraction

The first step is to detect the reference section within a scientific article and
directly builds upon the output of the text block extraction stage. We look for
a specific heading that indicates the beginning of the reference section, which is
usually one of “References”, “Bibliography”, “References and Notes”, “Litera-
ture cited”, and common variations of those strings (e.g., upper-case variants).

8 http://www.ncbi.nlm.nih.gov/pubmed/



8 Stefan Klampfl and Roman Kern

We iterate over all blocks in the reading order and use a regular expression to
find the reference headers. Then we collect all lines until we encounter either an-
other section heading, starting with “Acknowledgement”, “Autobiographical”,
“Table”, “Appendix”, “Exhibit”, “Annex”, “Fig”, or “Notes”, or the end of the
document.

In addition, we incorporate layout information into the reference line extrac-
tion in three ways. First, column information is implicitly provided through the
consideration of text blocks. Second, we ignored the content of decoration blocks
(headers and footers consisting of page numbers, authors, or journal names),
which we computed by associating blocks across neighbouring pages based on
their content and geometrical position [6]. Finally, we ignored all lines following
a vertical gap that is larger than the average gap size plus two times the stan-
dard deviation of gap sizes. This criterion has been introduced as the block of
references is often followed by footnotes, copyright information or other types of
text which is visually separated from the references by a bigger gap.

4.2 Reference segmentation

After the reference lines of the article have been collected, the next step is the
segmentation of these lines into individual reference strings. We distinguish three
cases how reference strings can be marked: 1) with square or round brackets (e.g.,
“[1]” or “(1)”), 2) with naked numbers, and 3) strings are unmarked. For cases
1 and 2 the most common marker type is found via regular expressions, and the
marker is also used to segment the references. For case 3 we incorporate layout
information by looking for start lines which visually stick out from the rest of the
lines, e.g., by a negative indentation. Our algorithm uses clustering to separate
first lines from the rest of lines, assuming that the first lines will be the minority
class.

We inspect each text block containing reference lines. If a block contains just
a single line, this line is assumed to be an artefact of the PDF extraction process
and is completely ignored. For blocks with more than two lines we cluster the
lines using a simple version of the k-means clustering algorithm. The sole feature
we use for this is the minimal x-coordinate of a line’s bounding box. We set the
number of clusters to 2 and initialize the two centroids with the minimal and
maximal value of the feature. Then we assign each line to that centroid which
is closer to the line’s x-coordinate. We stop after a single iteration and update
the centroids with the mean of the assigned features. At this stage all lines are
assigned to one of the two clusters. Only if two conditions are met the layout
based splitting is applied: The minimum cluster must contain fewer lines than
the maximum cluster and the centroids differ by at least 0.05 ∗maxLineWidth.
If this is the case all lines from the minimum cluster are considered to be the
first line of a new reference at which the reference lines are split into individual
reference strings.



Machine Learning for Extracting Contextual Information 9

4.3 Reference preprocessing

The task of the reference preprocessing step is to clean the text of the references
before the token classification is applied. The preprocessing consists of two parts,
dehyphenation and normalization.

In the first part we resolve hyphenations by removing hyphens “-” and con-
catenating the split word parts if they are the result of a proper English hy-
phenation. For each line that ends with a hyphen we apply hyphenation on the
concatenated word using a list of hyphenation patterns taken from the TEX
distribution, and if the line split occurs at one of the proposed split points we
resolve the hyphenation.

For normalization, we align the pages information to the form “<number>–
<number>”, even if there are multiple tokens or different dash characters.

4.4 Reference token classification

The final step is the categorisation of the individual tokens of the extracted
and preprocessed reference strings. We used the following token types: author-
GivenName, authorSurname, authorOther, editor, title, date, publisher, issueTi-
tle, bookTitle, pages, location, conference, source, volume, edition, issue, url, note,
and other. The class authorOthers is used for intermediate tokens in the author
substring, such as “and”.

At the core of the reference extraction process lies a supervised sequential
machine learning algorithm. We use a conditional random field (CRF) [9], which
has also been used in the original ParsCit system [3]. As implementation we use
the freely available crfsuite software9. We use all the original features from the
original ParsCit approach (see section 2 in [3] for the complete list). In addition,
we incorporate layout and formatting information by a set of binary features
specifying whether the font of the tokens inside a sliding window from -2 to
+2 tokens is equal to the font of the current token. Two fonts are considered
equal if they share the same font name, the same font size, and the same binary
attributes specifying whether they are bold or italic.

5 Extracting funding information using Named Entity
Recognition

Another major aspect in understanding the context in which a paper was written
are the funding agencies, EU projects, and research grants that participated in
funding a research and that obviously contributed to the development of a pub-
lication. These stakeholders are typically mentioned in the Acknowledgement
section of a paper. In principle, we use basic techniques from Named Entity
Recognition to extract this type of contextual information, however, our work is
embedded within the larger goal of ontologically mapping the domain of com-
puter science. We have recently made some initial steps in that direction [8].

9 http://www.chokkan.org/software/crfsuite/



10 Stefan Klampfl and Roman Kern

Fig. 4. Ontological description of the computer science domain, with the funding in-
formation being one of the concepts. The domain model contains categories (boxes) as
well as linkage information in the form of relation categories (arrows).

For many domains ontologies already exist, which help to describe the content
of scientific articles. This is in particular true for the biomedical domain; in other
domains, such ontologies do not exist. In our recent work we found out that
such ontologies are lacking for the domain of computer science [8]. Therefore we
devised an ontological structure, which describes the main concepts in computer
science literature, including the information about grants and funding agencies.
In addition, we modelled the relationship between the concepts, see Figure 4.

Once the ontological structure had been finalised, we manually crafted a
ground truth data set by annotating a selection of scientific articles. The final
data set contained more than 5,000 manually curated entities and relations. This
process shaped our understanding of the complexity of the task and possible ways
to automatically infer these annotations.

Equipped with the understanding of what constitutes certain concepts in
computer science literature, we realised a heuristics based automatic annotation
scheme. In particular, for the funding information, we relied on a set of man-
ually selected trigger phrases. We combined the information of the presence of
one of the trigger phrases with the information of the noun phrases of the sen-
tence, containing the trigger phrase. This first, basic approach already provided
a performance of 0.79 precision and 0.70 recall in a preliminary evaluation.

Next, we applied machine learning for the automatic annotation of all con-
cepts and relationship found in our ontological structure, including the infor-
mation on grants and funding agencies. Therefore we utilised a general purpose
information extraction pipeline, found in the CODE annotator10. This pipeline
provides a flexible framework of different feature generation algorithms and
highly configurable sequence classification algorithms. The framework itself is

10 http://code-annotator.know-center.at



Machine Learning for Extracting Contextual Information 11

thereby not limited to the extraction of information from scientific articles alone,
but can be applied on any textual resources. In the case of extracting funding
information, it has been sufficient to convert the human annotations into the
format suitable as training data for our framework. In this scenario we had only
37 instances of funding information, of which 30 were unique. This is a very low
number for a supervised machine learning scenario, even too low to conduct a
cross-evaluation. As a point of reference, our framework was able to achieve 0.75
precision and 0.61 recall, when tested on the training data set. This is certainly
not representative of the performance, which can be expected in a real world
scenario.

6 Conclusion & Discussion

In this work we have presented a system for extracting contextual information
from scientific publications that are given as PDF files. It utilises the flexibility of
both unsupervised and supervised machine learning techniques (i) to form words,
lines, and blocks out of the raw character stream of the PDF, (ii) to classify
these blocks into different meta-data categories, such as authors and affiliations,
and (iii) to detect and segment reference strings and to classify tokens of these
reference strings into different categories such as authors, title, journal, or year of
publication. The features for our algorithms are composed of layout information
(e.g., the absolute and relative geometrical positioning of text blocks on a page),
formatting information (e.g., the type, style, and size of fonts), and textual
information. Furthermore, we used techniques from information extraction and
named entity recognition to extract information about funding agencies, research
grants, and EU projects.

One major problem with PDFBox and other low-level PDF parsing tools
is that the information provided about individual characters in the PDF is in-
herently noisy, for example, height and width information might be wrong, or
information about the font of some characters might be missing. This implicit
noise affects every stage of our system and thus its overall performance.

Parts of our system rely on models being learnt based on training data; hence
the overall performance of our system also scales with the quality and size of these
data sets. Our system is flexible and modular in nature and allows a separate
training of different stages on different training sets. In many cases we used a
subset of the PubMed database as a training set, mainly because it provides
a rigorous annotation of the complete content of each document, in particular,
meta-data and references. The publications in this database are from a wide
variety of journals the biomedical domain, which we consider as representative
for the general domain of scientific articles. Still it might not perform well on a
specific sub-domain, such as conference publications from computer science. This
would have to be addressed by a different training set that is more representative
for this type of publications, which to the best of our knowledge does not yet
exist in a reasonable size.



12 Stefan Klampfl and Roman Kern

In the future we plan to address the aforementioned limitations and further
improve the performance of the individual components. In particular, we plan
to replace the remaining heuristics and manual rules by more flexible machine
learning algorithms. Following this approach should enable us in the future to
extend the information that we harvest out of scientific articles even further.

Acknowledgements

The presented work was in part developed within the CODE project (grant no.
296150) and within the EEXCESS project (grant no. 600601) funded by the EU
FP7, as well as the TEAM IAPP project (grant no. 251514) within the FP7
People Programme. The Know-Center is funded within the Austrian COMET
Program Competence Centers for Excellent Technologies under the auspices
of the Austrian Federal Ministry of Transport, Innovation and Technology, the
Austrian Federal Ministry of Economy, Family and Youth and by the State of
Styria. COMET is managed by the Austrian Research Promotion Agency FFG.

References

1. Aiello, M., Monz, C., Todoran, L., Worring, M.: Document understanding for a
broad class of documents. International Journal on Document Analysis and Recog-
nition 5(1), 1–16 (2002)

2. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A Maximum Entropy Approach to
Natural Language Processing. Computational Linguistics 22(1), 39–71 (1996)

3. Councill, I.G., Giles, C.L., Kan, M.y.: ParsCit: An open-source CRF Reference
String Parsing Package. In: Calzolari, N., Choukri, K., Maegaard, B., Mariani,
J., Odjik, J., Piperidis, S., Tapias, D. (eds.) Proceedings of LREC. vol. 2008, pp.
661–667. Citeseer, European Language Resources Association (ELRA) (2008)

4. Kern, R., Jack, K., Hristakeva, M., Granitzer, M.: TeamBeam - Meta-Data Extrac-
tion from Scientific Literature. In: 1st International Workshop on Mining Scientific
Publications (2012)

5. Kern, R., Klampfl, S.: Extraction of References Using Layout and Formatting
Information from Scientific Articles. D-Lib Magazine 19(9/10) (Sep 2013)

6. Klampfl, S., Granitzer, M., Jack, K., Kern, R.: Unsupervised document structure
analysis of digital scientific articles. International Journal on Digital Libraries 14(3-
4), 83–99 (2014)

7. Klampfl, S., Kern, R.: An Unsupervised Machine Learning Approach to Body Text
and Table of Contents Extraction from Digital Scientific Articles. In: Research and
Advanced Technology for Digital Libraries. pp. 144–155 (2013)

8. Kröll, M., Klampfl, S., Kern, R.: Towards a Marketplace for the Scientific Commu-
nity: Accessing Knowledge from the Computer Science Domain. D-Lib Magazine
20(11/12) (2014)

9. Lafferty, J., Mccallum, A., Pereira, F., Science, I.: Conditional Random Fields:
Probabilistic Models for Segmenting and Labeling Sequence Data. In: Proceedings
of the International Conference on Machine Learning (ICML-2001) (2001)

10. Ratnaparkhi, A.: Maximum Entropy Models for Natural Langual Ambiguity Res-
olution. Ph.D. thesis (1998)


