Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2018

Lacic Emanuel, Traub Matthias, Duricic Tomislav, Eva Haslauer, Lex Elisabeth

Gone in 30 Days! Predictions for Car Import Planning

it - Information Technology, De Gruyter Oldenbourg, 2018

Journal
A challenge for importers in the automobile industry is adjusting to rapidly changing market demands. In this work, we describe a practical study of car import planning based on the monthly car registrations in Austria. We model the task as a data driven forecasting problem and we implement four different prediction approaches. One utilizes a seasonal ARIMA model, while the other is based on LSTM-RNN and both compared to a linear and seasonal baselines. In our experiments, we evaluate the 33 different brands by predicting the number of registrations for the next month and for the year to come.
2018

Rexha Andi, Mauro Dragoni, Marco Federici

An Unsupervised Aspect Extraction Strategy For Monitoring Real-Time Reviews Stream

Elsevier, 2018

Journal
One of the most important opinion mining research directions falls in the extraction ofpolarities referring to specific entities (aspects) contained in the analyzed texts. Thedetection of such aspects may be very critical especially when documents come fromunknown domains. Indeed, while in some contexts it is possible to train domainspecificmodels for improving the effectiveness of aspects extraction algorithms, inothers the most suitable solution is to apply unsupervised techniques by making suchalgorithms domain-independent and more efficient in a real-time environment. Moreover,an emerging need is to exploit the results of aspect-based analysis for triggeringactions based on these data. This led to the necessity of providing solutions supportingboth an effective analysis of user-generated content and an efficient and intuitive wayof visualizing collected data. In this work, we implemented an opinion monitoringservice implementing (i) a set of unsupervised strategies for aspect-based opinion miningtogether with (ii) a monitoring tool supporting users in visualizing analyzed data.The aspect extraction strategies are based on the use of an open information extractionstrategy. The effectiveness of the platform has been tested on benchmarks provided by the SemEval campaign and have been compared with the results obtained by domainad aptedtechniques.
2018

Lassnig Markus, Stabauer Petra, Breitfuß Gert, Mauthner Katrin

Geschäftsmodellinnovationen im Zeitalter von Digitalisierung und Industrie 4.0

HMD Praxis der Wirtschaftsinformatik Wirtschaftsinformatik, Stefan Meinhard, Karl-Michael Popp, Springer Fachmedien Wiesbaden, Wiesbaden, 2018

Journal
Zahlreiche Forschungsergebnisse im Bereich Geschäftsmodellinnovationenhaben gezeigt, dass über 90% aller Geschäftsmodelle der letzten50 Jahre aus einer Rekombination von bestehenden Konzepten entstanden sind.Grundsätzlich gilt das auch für digitale Geschäftsmodellinnovationen. Angesichtsder Breite potenzieller digitaler Geschäftsmodellinnovationen wollten die Autorenwissen, welche Modellmuster in der wirtschaftlichen Praxis welche Bedeutung haben.Deshalb wurde die digitale Transformation mit neuen Geschäftsmodellen ineiner empirischen Studie basierend auf qualitativen Interviews mit 68 Unternehmenuntersucht. Dabei wurden sieben geeignete Geschäftsmodellmuster identifiziert, bezüglichihres Disruptionspotenzials von evolutionär bis revolutionär klassifiziert undder Realisierungsgrad in den Unternehmen analysiert.Die stark komprimierte Conclusio lautet, dass das Thema Geschäftsmodellinnovationendurch Industrie 4.0 und digitale Transformation bei den Unternehmenangekommen ist. Es gibt jedoch sehr unterschiedliche Geschwindigkeiten in der Umsetzungund im Neuheitsgrad der Geschäftsmodellideen. Die schrittweise Weiterentwicklungvon Geschäftsmodellen (evolutionär) wird von den meisten Unternehmenbevorzugt, da hier die grundsätzliche Art und Weise des Leistungsangebots bestehenbleibt. Im Gegensatz dazu gibt es aber auch Unternehmen, die bereits radikale Änderungenvornehmen, die die gesamte Geschäftslogik betreffen. Entsprechend wird imvorliegenden Artikel ein Clustering von Geschäftsmodellinnovatoren vorgenommen – von Hesitator über Follower über Optimizer bis zu Leader in Geschäftsmodellinnovationen
2018

Hasani-Mavriqi Ilire, Kowald Dominik, Helic Denis, Lex Elisabeth

Consensus Dynamics in Online Collaboration Systems

Journal of Computational Social Networks , Ding-Zhu Du and My T. Thai, Springer Open, 2018

Journal
In this paper, we study the process of opinion dynamics and consensus building inonline collaboration systems, in which users interact with each other followingtheir common interests and their social pro les. Speci cally, we are interested inhow users similarity and their social status in the community, as well as theinterplay of those two factors inuence the process of consensus dynamics. Forour study, we simulate the di usion of opinions in collaboration systems using thewell-known Naming Game model, which we extend by incorporating aninteraction mechanism based on user similarity and user social status. Weconduct our experiments on collaborative datasets extracted from the Web. Our ndings reveal that when users are guided by their similarity to other users, theprocess of consensus building in online collaboration systems is delayed. Asuitable increase of inuence of user social status on their actions can in turnfacilitate this process. In summary, our results suggest that achieving an optimalconsensus building process in collaboration systems requires an appropriatebalance between those two factors.
2018

Lovric Mario

Molecular modeling of the quantitative structure activity relationship in Python – a tutorial (part I)

Journal of Chemists and Chemical Engineers, Croatian Society of Chemical Engineers, Zagreb, 2018

Journal
Today's data amount is significantly increasing. A strong buzzword in research nowadays is big data.Therefore the chemistry student has to be well prepared for the upcoming age where he does not only rule the laboratories but is a modeler and data scientist as well. This tutorial covers the very basics of molecular modeling and data handling with the use of Python and Jupyter Notebook. It is the first in a series aiming to cover the relevant topics in machine learning, QSAR and molecular modeling, as well as the basics of Python programming
2018

Rexha Andi, Kröll Mark, Ziak Hermann, Kern Roman

Authorship Identification of Documents with High Content Similarity

Scientometrics, Wolfgang Glänzel, Springer Link, 2018

Journal
The goal of our work is inspired by the task of associating segments of text to their real authors. In this work, we focus on analyzing the way humans judge different writing styles. This analysis can help to better understand this process and to thus simulate/ mimic such behavior accordingly. Unlike the majority of the work done in this field (i.e., authorship attribution, plagiarism detection, etc.) which uses content features, we focus only on the stylometric, i.e. content-agnostic, characteristics of authors.Therefore, we conducted two pilot studies to determine, if humans can identify authorship among documents with high content similarity. The first was a quantitative experiment involving crowd-sourcing, while the second was a qualitative one executed by the authors of this paper.Both studies confirmed that this task is quite challenging.To gain a better understanding of how humans tackle such a problem, we conducted an exploratory data analysis on the results of the studies. In the first experiment, we compared the decisions against content features and stylometric features. While in the second, the evaluators described the process and the features on which their judgment was based. The findings of our detailed analysis could (i) help to improve algorithms such as automatic authorship attribution as well as plagiarism detection, (ii) assist forensic experts or linguists to create profiles of writers, (iii) support intelligence applications to analyze aggressive and threatening messages and (iv) help editor conformity by adhering to, for instance, journal specific writing style.
2018

Bassa Akim, Kröll Mark, Kern Roman

GerIE - An Open InformationExtraction System for the German Language

Journal of Universal Computer Science, 2018

Journal
Open Information Extraction (OIE) is the task of extracting relations fromtext without the need of domain speci c training data. Currently, most of the researchon OIE is devoted to the English language, but little or no research has been conductedon other languages including German. We tackled this problem and present GerIE, anOIE parser for the German language. Therefore we started by surveying the availableliterature on OIE with a focus on concepts, which may also apply to the Germanlanguage. Our system is built upon the output of a dependency parser, on which anumber of hand crafted rules are executed. For the evaluation we created two dedicateddatasets, one derived from news articles and one based on texts from an encyclopedia.Our system achieves F-measures of up to 0.89 for sentences that have been correctlypreprocessed.
2017

Barreiros Carla, Veas Eduardo Enrique, Pammer-Schindler Viktoria

Can a green thumb make the difference? Using a Nature Metaphor to Communicate Sensor Information of a Coffee Machine

IEEE Consumers Electronics Magazine, 2017

Journal
This paper describes a novel visual metaphor to communicate sensor information of a connected device. The Internet of Things aims to extend every device with sensing and computing capabilities. A byproduct is that even domestic machines become increasingly complex, tedious to understand and maintain. This paper presents a prototype instrumenting a coffee machine with sensors. The machine streams the sensor data, which is picked up by an augmented reality application serving a nature metaphor. The nature metaphor, BioAR, represents the status derived from the coffee machine sensors in the features of a 3D virtual tree. The tree is meant to pass for a living proxy of the machine it represents. The metaphor, shown either with AR or a simple holographic display, reacts to the user manipulation of the machine and its workings. A first user study validates that the representation is correctly understood, and that it inspires affect for the machine. A second user study validates that the metaphor scales to a large number of machines.
2017

Topps David, Dennerlein Sebastian, Treasure-Jones Tamsin

Raising the BarCamp: international reflections

MedEdPublish, 2017

Journal
There is increasing interest in Barcamps and Unconferences as an educational approach during traditional medical education conferences. Ourgroup has now accumulated extensive experience in these formats over a number of years in different educational venues. We present asummary of observations and lessons learned about what works and what doesn’t.
2017

Wilsdon James , Bar-Ilan Judit, Frodemann Robert, Lex Elisabeth, Peters Isabella , Wouters Paul

Next-generation altmetrics: responsible metrics and evaluation for open science

European Union, 2017

Journal
2017

Pammer-Schindler Viktoria, Fessl Angela, Franz Weghofer, Thalmann Stefan

Lernen 4.0 Herausforderungen für Menschen in der Industrie 4.0 erfolgreich meistern.

Productivity, 2017

Journal
Die Digitalisierung der Industrie wird aktuell sehr stark aus technoogischer Sicht betrachtet. Aber auch für den Menschen ergebn sich vielfältige Herausforderungen in dieser veränderten Arbeitsumgebung. Sie betreffen hautsächlich das Lernen von benötigtem Wissen.
2017

Thalmann Stefan, Pammer-Schindler Viktoria

Die Rolle des Mitarbeiters in der Smart Factory

Wissensmanagement, 2017

Journal
Aktuelle Untersuchungen zeigen einerseits auf, dass der Mensch weiterhin eine zentrale Rolle in der Industrie spielt. Andererseits ist aber auch klar, dass die Zahl der direkt in der Produktion beschäftigten Mitarbeter sinken wird. Die Veränderung wird dahin gehen, dass der Mensch weniger gleichförmige Prozese bearbeitet, stattdessen aber in der Lage sein muss, sich schnell ändernden Arbeitstätigkeiten azupassen und individualisierte Fertigungsprozesse zu steuern. Die Reduktion der Mitarbeiter hat jedoch auch eine Reduktion von Redunanzen zur Folge. Dies führt dazu, dass dem Einzelnen mehr Verantwortung übertragen wird. Als Folge haben Fehlentscheidungen eine görßere Tragweite und bedeuten somit auch ein höheres Risikio. Der Erfolg einer Industrie 4.0 Kampagne wird daher im Wesentlichen von den Anpassungsfähigkeiten der Mitarbeiter abhängen.
2017

Kaiser René, Britta Meixner, Joscha Jäger

Reflecting on the Workshop on Interactive Content Consumption (WSICC) Series

IEEE MultiMedia Magazine, IEEE Computer Society, IEEE, 2017

Journal
Enabling interactive access to multimedia content and evaluating content-consumption behaviors and experiences involve several different research areas, which are covered at many different conferences. For four years, the Workshop on Interactive Content Consumption (WSICC) series offered a forum for combining interdisciplinary, comprehensive views, inspiring new discussions related to interactive multimedia. Here, the authors reflect on the outcome of the series.
2017

di Sciascio Maria Cecilia, Sabol Vedran, Veas Eduardo Enrique

Supporting Exploratory Search with a Visual User-Driven Approach

ACM Transactions on Interactive Intelligent Systems, ACM, ACM, 2017

Journal
Whenever we gather or organize knowledge, the task of search-ing inevitably takes precedence. As exploration unfolds, it be-comes cumbersome to reorganize resources along new interests,as any new search brings new results. Despite huge advances inretrieval and recommender systems from the algorithmic point ofview, many real-world interfaces have remained largely unchanged:results appear in an infinite list ordered by relevance with respect tothe current query. We introduceuRank, a user-driven visual tool forexploration and discovery of textual document recommendations.It includes a view summarizing the content of the recommenda-tion set, combined with interactive methods for understanding, re-fining and reorganizing documents on-the-fly as information needsevolve. We provide a formal experiment showing thatuRankuserscan browse the document collection and efficiently gather items rel-evant to particular topics of interest with significantly lower cogni-tive load compared to traditional list-based representations.
2017

Paul Seitlinger, Tobias Ley, Kowald Dominik, Theiler Dieter, Hasani-Mavriqi Ilire, Dennerlein Sebastian, Lex Elisabeth, Dietrich Albert

Balancing the Fluency-Consistency Tradeoff in Collaborative Information Search Using a Recommender Approach

International Journal of Human-Computer Interaction, Constantine Stephanidis and Gavriel Salvendy , Taylor and Francis, 2017

Journal
Creative group work can be supported by collaborative search and annotation of Web resources. In this setting, it is important to help individuals both stay fluent in generating ideas of what to search next (i.e., maintain ideational fluency) and stay consistent in annotating resources (i.e., maintain organization). Based on a model of human memory, we hypothesize that sharing search results with other users, such as through bookmarks and social tags, prompts search processes in memory, which increase ideational fluency, but decrease the consistency of annotations, e.g., the reuse of tags for topically similar resources. To balance this tradeoff, we suggest the tag recommender SoMe, which is designed to simulate search of memory from user-specific tag-topic associations. An experimental field study (N = 18) in a workplace context finds evidence of the expected tradeoff and an advantage of SoMe over a conventional recommender in the collaborative setting. We conclude that sharing search results supports group creativity by increasing the ideational fluency, and that SoMe helps balancing the evidenced fluency-consistency tradeoff.
2017

Ross-Hellauer Anthony

What is open peer review? A systematic review [version 2; referees: 4 approved]

F1000Research, F1000, 2017

Journal
Background: “Open peer review” (OPR), despite being a major pillar of Open Science, has neither a standardized definition nor an agreed schema of its features and implementations. The literature reflects this, with numerous overlapping and contradictory definitions. While for some the term refers to peer review where the identities of both author and reviewer are disclosed to each other, for others it signifies systems where reviewer reports are published alongside articles. For others it signifies both of these conditions, and for yet others it describes systems where not only “invited experts” are able to comment. For still others, it includes a variety of combinations of these and other novel methods.Methods: Recognising the absence of a consensus view on what open peer review is, this article undertakes a systematic review of definitions of “open peer review” or “open review”, to create a corpus of 122 definitions. These definitions are systematically analysed to build a coherent typology of the various innovations in peer review signified by the term, and hence provide the precise technical definition currently lacking.Results: This quantifiable data yields rich information on the range and extent of differing definitions over time and by broad subject area. Quantifying definitions in this way allows us to accurately portray exactly how ambiguously the phrase “open peer review” has been used thus far, for the literature offers 22 distinct configurations of seven traits, effectively meaning that there are 22 different definitions of OPR in the literature reviewed.Conclusions: I propose a pragmatic definition of open peer review as an umbrella term for a number of overlapping ways that peer review models can be adapted in line with the aims of Open Science, including making reviewer and author identities open, publishing review reports and enabling greater participation in the peer review process.
2017

Rivera-Pelayo Verónica, Fessl Angela, Müller Lars, Pammer-Schindler_TU Viktoria

Introducing Mood Self-Tracking at Work: Empirical Insights from Call Centers

ACM Transactions on Computer-Human Interaction (TOCHI), ACM New York, NY, USA , 2017

Journal
The benefits of self-tracking have been thoroughly investigated in private areas of life, like health or sustainable living, but less attention has been given to the impact and benefits of self-tracking in work-related settings. Through two field studies, we introduced and evaluated a mood self-tracking application in two call centers to investigate the role of mood self-tracking at work, as well as its impact on individuals and teams. Our studies indicate that mood self-tracking is accepted and can improve performance if the application is well integrated into the work processes and matches the management style. The results show that (i) capturing moods and explicitly relating them to work tasks facilitated reflection, (ii) mood self-tracking increased emotional awareness and this improved cohesion within teams, and (iii) proactive reactions by managers to trends and changes in team members’ mood were key for acceptance of reflection and correlated with measured improvements in work performance. These findings help to better understand the role and potential of self-tracking in work settings and further provide insights that guide future researchers and practitioners to design and introduce these tools in a workplace setting.
2017

Christin Seifert, Werner Bailer, Thomas Orgel, Louis Gantner, Kern Roman, Ziak Hermann, Albin Petit, Jörg Schlötterer, Stefan Zwicklbauer, Michael Granitzer

Ubiquitous Access to Digital Cultural Heritage

Journal on Computing and Cultural Heritage (JOCCH) - Special Issue on Digital Infrastructure for Cultural Heritage, Part 1, Roberto Scopign, ACM, New York, NY, US, 2017

Journal
The digitization initiatives in the past decades have led to a tremendous increase in digitized objects in the cultural heritagedomain. Although digitally available, these objects are often not easily accessible for interested users because of the distributedallocation of the content in different repositories and the variety in data structure and standards. When users search for culturalcontent, they first need to identify the specific repository and then need to know how to search within this platform (e.g., usageof specific vocabulary). The goal of the EEXCESS project is to design and implement an infrastructure that enables ubiquitousaccess to digital cultural heritage content. Cultural content should be made available in the channels that users habituallyvisit and be tailored to their current context without the need to manually search multiple portals or content repositories. Torealize this goal, open-source software components and services have been developed that can either be used as an integratedinfrastructure or as modular components suitable to be integrated in other products and services. The EEXCESS modules andcomponents comprise (i) Web-based context detection, (ii) information retrieval-based, federated content aggregation, (iii) meta-data definition and mapping, and (iv) a component responsible for privacy preservation. Various applications have been realizedbased on these components that bring cultural content to the user in content consumption and content creation scenarios. Forexample, content consumption is realized by a browser extension generating automatic search queries from the current pagecontext and the focus paragraph and presenting related results aggregated from different data providers. A Google Docs add-onallows retrieval of relevant content aggregated from multiple data providers while collaboratively writing a document. Theserelevant resources then can be included in the current document either as citation, an image, or a link (with preview) withouthaving to leave disrupt the current writing task for an explicit search in various content providers’ portals.
2017

Ross-Hellauer Anthony, Deppe A., Schmidt B.

Survey on open peer review: Attitudes and experience amongst editors, authors and reviewers

Journal, PLOS One, 2017

Journal
Open peer review (OPR) is a cornerstone of the emergent Open Science agenda. Yet to date no large-scale survey of attitudes towards OPR amongst academic editors, authors, reviewers and publishers has been undertaken. This paper presents the findings of an online survey, conducted for the OpenAIRE2020 project during September and October 2016, that sought to bridge this information gap in order to aid the development of appropriate OPR approaches by providing evidence about attitudes towards and levels of experience with OPR. The results of this cross-disciplinary survey, which received 3,062 full responses, show the majority (60.3%) of respondents to be believe that OPR as a general concept should be mainstream scholarly practice (although attitudes to individual traits varied, and open identities peer review was not generally favoured). Respondents were also in favour of other areas of Open Science, like Open Access (88.2%) and Open Data (80.3%). Among respondents we observed high levels of experience with OPR, with three out of four (76.2%) reporting having taken part in an OPR process as author, reviewer or editor. There were also high levels of support for most of the traits of OPR, particularly open interaction, open reports and final-version commenting. Respondents were against opening reviewer identities to authors, however, with more than half believing it would make peer review worse. Overall satisfaction with the peer review system used by scholarly journals seems to strongly vary across disciplines. Taken together, these findings are very encouraging for OPR’s prospects for moving mainstream but indicate that due care must be taken to avoid a “one-size fits all” solution and to tailor such systems to differing (especially disciplinary) contexts. OPR is an evolving phenomenon and hence future studies are to be encouraged, especially to further explore differences between disciplines and monitor the evolution of attitudes.
2017

di Sciascio Maria Cecilia, Sabol Vedran, Veas Eduardo Enrique

Supporting Exploratory Search with a Visual User-Driven Approach

Transactions on Interactive Intelligent Systems, ACM, 2017

Journal
Whenever users engage in gathering and organizing new information, searching and browsing activities emerge at the core of the exploration process. As the process unfolds and new knowledge is acquired, interest drifts occur inevitably and need to be accounted for. Despite the advances in retrieval and recommender algorithms, real-world interfaces have remained largely unchanged: results are delivered in a relevance-ranked list. However, it quickly becomes cumbersome to reorganize resources along new interests, as any new search brings new results. We introduce an interactive user-driven tool that aims at supporting users in understanding, refining, and reorganizing documents on the fly as information needs evolve. Decisions regarding visual and interactive design aspects are tightly grounded on a conceptual model for exploratory search. In other words, the different views in the user interface address stages of awareness, exploration, and explanation unfolding along the discovery process, supported by a set of text-mining methods. A formal evaluation showed that gathering items relevant to a particular topic of interest with our tool incurs in a lower cognitive load compared to a traditional ranked list. A second study reports on usage patterns and usability of the various interaction techniques within a free, unsupervised setting.
2017

Fessl Angela, Wesiak Gudrun, Feyertag Sandra, Rivera-Pelayo Verónica, Pammer-Schindler_TU Viktoria

In-app Reflection Guidance: Lessons Learned across Four Field Trials at the Workplace

IEEE Transactions on Learning Technologies, IEEE, 2017

Journal
This paper presents a concept for in-app reflection guidance and its evaluation in four work-related field trials. By synthesizing across four field trials, we can show that computer-based reflection guidance can function in the workplace, in the sense of being accepted as technology, being perceived as useful and leading to reflective learning. This is encouraging for all endeavours aiming to transfer existing knowledge on reflection supportive technology from educational settings to the workplace. However,reflective learning in our studies was mostly visible to limited depth in textual entries made in the applications themselves; and proactive reflection guidance technology like prompts were often found to be disruptive. We offer these two issues as highly relevant questions for future research.
2016

Silva Nelson, Christian Caldera, Ulrich Krispel, Eva Eggeling, Alexander Sunk, Gerhard Reisinger, Wilfried Sihn, Dieter W. Fellner

VASCO - Digging the Dead Man's Chest of Value Streams

International Journal on Advances in Intelligent Systems, IARIA, 2016

Journal
Value stream mapping is a lean management method for analyzing and optimizing a series of events for production or services. Even today the first step in value stream analysis – the acquisition of the current state map – is still created using pen & paper by physically visiting the production line. We capture a digital representation of how manufacturing processes look like in reality. The manufacturing processes can be represented and efficiently analyzed for future production planning as a future state map by using a meta description together with a dependency graph. With VASCO we present a tool, which contributes to all parts of value stream analysis - from data acquisition, over analyzing, planning, comparison up to simulation of alternative future state maps.We call this a holistic approach for Value stream mapping including detailed analysis of lead time, productivity, space, distance, material disposal, energy and carbon dioxide equivalents – depending in a change of calculated direct product costs.
2016

Dennerlein Sebastian, Treasure-Jones Tamsin, Lex Elisabeth, Tobias Ley

The role of collaboration and shared understanding in interprofessional teamwork

AMEE - International Conference of Medical Education 2016, AMEE 2016, 2016

Journal
Background: Teamworking, within and across healthcare organisations, is essential to deliver excellent integrated care. Drawing upon an alternation of collaborative and cooperative phases, we explored this teamworking and respective technological support within UK Primary Care. Participants used Bits&Pieces (B&P), a sensemaking tool for traced experiences that allows sharing results and mutually elaborating them: i.e. cooperating and/or collaborating. Summary of Work: We conducted a two month-long case study involving six healthcare professionals. In B&P, they reviewed organizational processes, which required the involvement of different professions in either collaborative and/or cooperative manner. We used system-usage data, interviews and qualitative analysis to understand the interplay of teamworkingpractice and technology. Summary of Results: Within our analysis we mainly identified cooperation phases. In a f2f-meeting, professionals collaboratively identified subtasks and assigned individuals leading collaboration on them. However, these subtasks were undertaken as individual sensemaking efforts and finally combined (i.e. cooperation). We found few examples of reciprocal interpretation processes (i.e. collaboration): e.g. discussing problems during sensemaking or monitoring other’s sensemaking-outcomes to make suggestions. Discussion: These patterns suggest that collaboration in healthcare often helps to construct a minimal shared understanding (SU) of subtasks to engage in cooperation, where individuals trust in other’s competencies and autonomous completion. However, we also found that professionals with positive collaboration history and deepened SU were willing to undertake subtasks collaboratively. It seems that acquiring such deepened SU of concepts and methods, leads to benefits that motivate professionals to collaborate more. Conclusion: Healthcare is a challenging environment requiring interprofessional work across organisations. For effective teamwork, a deepened SU is crucial and both cooperation and collaboration are required. However, we found a tendency of staff to rely mainly on cooperation when working in teams and not fully explore benefits of collaboration. Take Home Messages: To maximise benefits of interprofessional working, tools for teamworking should support both cooperation and collaboration processes and scaffold the move between them
2016

Yusuke Fukazawa, Kröll Mark, Strohmaier Markus, Ota Jun

IR based Task-Model Learning: Automating the hierarchical structuring of tasks

Web Intelligence, IOS Press, IOS Press, 2016

Journal
Task-models concretize general requests to support users in real-world scenarios. In this paper, we present an IR based algorithm (IRTML) to automate the construction of hierarchically structured task-models. In contrast to other approaches, our algorithm is capable of assigning general tasks closer to the top and specific tasks closer to the bottom. Connections between tasks are established by extending Turney’s PMI-IR measure. To evaluate our algorithm, we manually created a ground truth in the health-care domain consisting of 14 domains. We compared the IRTML algorithm to three state-of-the-art algorithms to generate hierarchical structures, i.e. BiSection K-means, Formal Concept Analysis and Bottom-Up Clustering. Our results show that IRTML achieves a 25.9% taxonomic overlap with the ground truth, a 32.0% improvement over the compared algorithms.
2016

Santoz Patricia, Dennerlein Sebastian, Theiler Dieter, Cool John, Trasure-Jones Tamsin, Holley Debbie, Kerr Micky , Atwell Graham, Kowald Dominik, Lex Elisabeth

Going beyond your Personal Learning Network, using Recommendations and Trust through a Multimedia Question-Answering Service for Decision-support: a Case Study in the Healthcare

Journal of Universal Computer Science, J.UCS, J. UCS Consortium, 2016

Journal
Social learning networks enable the sharing, transfer and enhancement of knowledge in the workplace that builds the ground to exchange informal learning practices. In this work, three healthcare networks are studied in order to understand how to enable the building, maintaining and activation of new contacts at work and the exchange of knowledge between them. By paying close attention to the needs of the practitioners, we aimed to understand how personal and social learning could be supported by technological services exploiting social networks and the respective traces reflected in the semantics. This paper presents a case study reporting on the results of two co-design sessions and elicits requirements showing the importance of scaffolding strategies in personal and shared learning networks. Besides, the significance of these strategies to aggregate trust among peers when sharing resources and decision-support when exchanging questions and answers. The outcome is a set of design criteria to be used for further technical development for a social tool. We conclude with the lessons learned and future work.
2016

Fessl Angela, Pammer-Schindler Viktoria, Blunk Oliver, Prilla Michael

The known universe of reflection guidance: a literature review

International Journal of Technology Enhanced Learning, Inderscience Enterprises Ltd., 2016

Journal
Reflective learning has been established as a process that deepenslearning in both educational and work-related settings. We present a literaturereview on various approaches and tools (e.g., prompts, journals, visuals)providing guidance for facilitating reflective learning. Research consideredin this review coincides common understanding of reflective learning, hasapplied and evaluated a tool supporting reflection and presents correspondingresults. Literature was analysed with respect to timing of reflection, reflectionparticipants, type of reflection guidance, and results achieved regardingreflection. From this analysis, we were able to derive insights, guidelinesand recommendations for the design of reflection guidance functionality incomputing systems: (i) ensure that learners understand the purpose of reflectivelearning, (ii) combine reflective learning tools with reflective questions either inform of prompts or with peer-to-peer or group discussions, (iii) for work-relatedsettings consider the time with regard to when and how to motivate to reflect.
2016

Kraker Peter, Peters Ines, Lex Elisabeth, Gumpenberger Christian , Gorraiz Juan

Research data explored: an extended analysis of citations and alt metrics

Journal of Scientometrics, Springer Link, Springer-Verlag, Cham, 2016

Journal
In this study, we explore the citedness of research data, its distribution over time and its relation to the availability of a digital object identifier (DOI) in the Thomson Reuters database Data Citation Index (DCI). We investigate if cited research data ‘‘im- pacts’’ the (social) web, reflected by altmetrics scores, and if there is any relationship between the number of citations and the sum of altmetrics scores from various social media platforms. Three tools are used to collect altmetrics scores, namely PlumX, ImpactStory, and Altmetric.com, and the corresponding results are compared. We found that out of the three altmetrics tools, PlumX has the best coverage. Our experiments revealed that research data remain mostly uncited (about 85 %), although there has been an increase in citing data sets published since 2008. The percentage of the number of cited research data with a DOI in DCI has decreased in the last years. Only nine repositories are responsible for research data with DOIs and two or more citations. The number of cited research data with altmetrics ‘‘foot-prints’’ is even lower (4–9 %) but shows a higher coverage of research data from the last decade. In our study, we also found no correlation between the number of citations and the total number of altmetrics scores. Yet, certain data types (i.e. survey, aggregate data, and sequence data) are more often cited and also receive higher altmetrics scores. Additionally, we performed citation and altmetric analyses of all research data published between 2011 and 2013 in four different disciplines covered by the DCI. In general, these results correspond very well with the ones obtained for research data cited at least twice and also show low numbers in citations and in altmetrics. Finally, we observed that there are disciplinary differences in the availability and extent of altmetrics scores.
2016

Simon Jörg Peter, Schmidt Peter, Pammer-Schindler Viktoria

Analysis of Differential Synchronisation's Energy Consumption on Mobile Devices

EAI Collaborative Computing, CoRR (2016), EAI, 2016

Journal
Synchronisation algorithms are central to collaborative editing software. As collaboration is increasingly mediated by mobile devices, the energy efficiency for such algorithms is interest to a wide community of application developers. In this paper we explore the differential synchronisation (diffsync) algorithm with respect to energy consumption on mobile devices. Discussions within this paper are based on real usage data of PDF annotations via the Mendeley iOS app, which requires realtime synchronisation. We identify three areas for optimising diffsync: a.) Empty cycles in which no changes need to be processed b.) tail energy by adapting cycle intervals and c.) computational complexity. Following these considerations, we propose a push-based diffsync strategy in which synchronisation cycles are triggered when a device connects to the network or when a device is notified of changes.
2016

Trattner Christoph, Kowald Dominik, Ley Tobias, Seitlinger Paul

Modeling Activation Processes in Human Memory to Predict the Reuse of Tags

The Journal of Web Science, James Finlay, NOW publishing, 2016

Journal
Several successful tag recommendation mechanisms have been developed, including algorithms built upon Collaborative Filtering, Tensor Factorization, graph-based and simple "most popular tags" approaches. From an economic perspective, the latter approach has been convincing since calculating frequencies is computationally efficient and effective with respect to different recommender evaluation metrics. In this paper, we introduce a tag recommendation algorithm that mimics the way humans draw on items in their long-term memory in order to extend these conventional "most popular tags" approaches. Based on a theory of human memory, the approach estimates a tag's reuse probability as a function of usage frequency and recency in the user's past (base-level activation) as well as of the current semantic context (associative component).Using four real-world folksonomies gathered from bookmarks in BibSonomy, CiteULike, Delicious and Flickr, we show how refining frequency-based estimates by considering recency and semantic context outperforms conventional "most popular tags" approaches and another existing and very effective but less theory-driven, time-dependent recommendation mechanism. By combining our approach with a simple resource-specific frequency analysis, our algorithm outperforms other well-established algorithms, such as Collaborative Filtering, FolkRank and Pairwise Interaction Tensor Factorization with respect to recommender accuracy and runtime. We conclude that our approach provides an accurate and computationally efficient model of a user's temporal tagging behavior. Moreover, we demonstrate how effective principles of recommender systems can be designed and implemented if human memory processes are taken into account.
2016

Kraker Peter, Dennerlein Sebastian, Dörler, D, Ferus, A, Gutounig, R., Heigl, F., Kaier, C., Rieck, K., Šimukovic, E., Vignoli, M.

The Vienna Principles: A Vision for Scholarly Communication in the 21st Century.

15th Annual STS Conference Graz 2016 Track: The Politics of Open Science, OANA, Zenodo, 2016

Journal
Between April 2015 and June 2016, members of the Open Access Network Aus - tria (OANA) working group “Open Access and Scholarly Communication” met in Vienna to discuss a fundamental reform of the scholarly communication system. By scholarly communication we mean the processes of producing, reviewing, organising, disseminating and preserving scholarly knowledge 1. Scholarly communication does not only concern researchers, but also society at large, especially students, educators, policy makers, public administrators, funders, librarians, journalists, practitioners, publishers, public and private organi sations, and interested citizens.
2016

Hasani-Mavriqi Ilire, Geigl Florian, Pujari Subhash Chandra , Lex Elisabeth, Helic Denis

The Influence of Social Status and Network Structure on Consensus Building in Collaboration Networks

Social Network Analysis and Mining, Reda Alhajj, Springer Vienna, 2016

Journal
In this paper, we study the process of opinion dynamics and consensus building in online collaboration systems, in which users interact with each other following their common interests and their social profiles. Specifically, we are interested in how users similarity and their social status in the community, as well as the interplay of those two factors influence the process of consensus dynamics. For our study, we simulate the diffusion of opinions in collaboration systems using the well-known Naming Game model, which we extend by incorporating an interaction mechanism based on user similarity and user social status. We conduct our experiments on collaborative datasets extracted from the Web. Our findings reveal that when users are guided by their similarity to other users, the process of consensus building in online collaboration systems is delayed. A suitable increase of influence of user social status on their actions can in turn facilitate this process. In summary, our results suggest that achieving an optimal consensus building process in collaboration systems requires an appropriate balance between those two factors.
2016

Kopeinik Simone, Kowald Dominik, Hasani-Mavriqi Ilire, Lex Elisabeth

Improving Collaborative Filtering Using a Cognitive Model of Human Category Learning

Journal of WebScience, James Finlay, Now publishing, 2016

Journal
Classic resource recommenders like Collaborative Filteringtreat users as just another entity, thereby neglecting non-linear user-resource dynamics that shape attention and in-terpretation. SUSTAIN, as an unsupervised human cate-gory learning model, captures these dynamics. It aims tomimic a learner’s categorization behavior. In this paper, weuse three social bookmarking datasets gathered from Bib-Sonomy, CiteULike and Delicious to investigate SUSTAINas a user modeling approach to re-rank and enrich Collab-orative Filtering following a hybrid recommender strategy.Evaluations against baseline algorithms in terms of recom-mender accuracy and computational complexity reveal en-couraging results. Our approach substantially improves Col-laborative Filtering and, depending on the dataset, success-fully competes with a computationally much more expen-sive Matrix Factorization variant. In a further step, we ex-plore SUSTAIN’s dynamics in our specific learning task andshow that both memorization of a user’s history and clus-tering, contribute to the algorithm’s performance. Finally,we observe that the users’ attentional foci determined bySUSTAIN correlate with the users’ level of curiosity, iden-tified by the SPEAR algorithm. Overall, the results ofour study show that SUSTAIN can be used to efficientlymodel attention-interpretation dynamics of users and canhelp improve Collaborative Filtering for resource recommen-dations.
2016

Kraker Peter, Christopher Kittel, Asura Enkhbayar

Open Knowledge Maps: Creating a Visual Interface to the World’s Scientific Knowledge Based on Natural Language Processing

027.7 Journal for Library Culture, 2016

Journal
The goal of Open Knowledge Maps is to create a visual interface to the world’s scientific knowledge. The base for this visual interface consists of so-called knowledge maps, which enable the exploration of existing knowledge and the discovery of new knowledge. Our open source knowledge mapping software applies a mixture of summarization techniques and similarity measures on article metadata, which are iteratively chained together. After processing, the representation is saved in a database for use in a web visualization. In the future, we want to create a space for collective knowledge mapping that brings together individuals and communities involved in exploration and discovery. We want to enable people to guide each other in their discovery by collaboratively annotating and modifying the automatically created maps.
2016

Trattner Christoph, Kuśmierczyk Tomasz, Nørvåg Kjetil

FOODWEB - Studying Online Food Consumption and Production Patterns on the Web

ERCIM NEWS, ERCIM EEIG, 2016

Journal
2015

Trattner Christoph, Steurer Michael

Detecting partnership in location-based and online social networks

Social Netw. Analys. Mining, Springer, 2015

Journal
Existing approaches to identify the tie strength between users involve typically only one type of network. To date, no studies exist that investigate the intensity of social relations and in particular partnership between users across social networks. To fill this gap in the literature, we studied over 50 social proximity features to detect the tie strength of users defined as partnership in two different types of networks: location-based and online social networks. We compared user pairs in terms of partners and non-partners and found significant differences between those users. Following these observations, we evaluated the social proximity of users via supervised and unsupervised learning approaches and establish that location-based social networks have a great potential for the identification of a partner relationship. In particular, we established that location-based social networks and correspondingly induced features based on events attended by users could identify partnership with 0.922 AUC, while online social network data had a classification power of 0.892 AUC. When utilizing data from both types of networks, a partnership could be identified to a great extent with 0.946 AUC. This article is relevant for engineers, researchers and teachers who are interested in social network analysis and mining.
2015

Markus Tatzgern, Raphael Grasset, Veas Eduardo Enrique, Dieter Schmalstieg

Exploring real world points of interest: Design and evaluation of object-centric exploration techniques for augmented reality

Pervasive and Mobile Computing, Elsevier, 2015

Journal
Augmented reality (AR) enables users to retrieve additional information about real world objects and locations. Exploring such location-based information in AR requires physical movement to different viewpoints, which may be tiring and even infeasible when viewpoints are out of reach. In this paper, we present object-centric exploration techniques for handheld AR that allow users to access information freely using a virtual copy metaphor. We focus on the design of techniques that allow the exploration of large real world objects. We evaluated our interfaces in a series of studies in controlled conditions and compared them to a 3D map interface, which is a more common method for accessing location-based information. Based on our findings, we put forward design recommendations that should be considered by future generations of location-based AR browsers, 3D tourist guides or situated urban planning.
2015

Lin Yi-ling, Trattner Christoph, Brusilovsky Peter , He Daqing

The impact of image descriptions on user tagging behavior: A study of the nature and functionality of crowdsourced tags

JASIST, Wiley, 2015

Journal
Crowdsourcing has been emerging to harvest social wisdom from thousands of volunteers to perform series of tasks online. However, little research has been devoted to exploring the impact of various factors such as the content of a resource or crowdsourcing interface design to user tagging behavior. While images’ titles and descriptions are frequently available in image digital libraries, it is not clear whether they should be displayed to crowdworkers engaged in tagging. This paper focuses on offering an insight to the curators of digital image libraries who face this dilemma by examining (i) how descriptions influence the user in his/her tagging behavior and (ii) how this relates to the (a) nature of the tags, (b) the emergent folksonomy, and (c) the findability of the images in the tagging system. We compared two different methods for collecting image tags from Amazon’s Mechanical Turk’s crowdworkers – with and without image descriptions. Several properties of generated tags were examined from different perspectives: diversity, specificity, reusability, quality, similarity, descriptiveness, etc. In addition, the study was carried out to examine the impact of image description on supporting users’ information seeking with a tag cloud interface. The results showed that the properties of tags are affected by the crowdsourcing approach. Tags from the “with description” condition are more diverse and more specific than tags from the “without description” condition, while the latter has a higher tag reuse rate. A user study also revealed that different tag sets provided different support for search. Tags produced “with description” shortened the path to the target results, while tags produced without description increased user success in the search task
2015

Kraker Peter

Educational Technology as Seen Through the Eyes of the Readers

International Journal of Technology Enhanced Learning, Inderscience Publishers, 2015

Journal
In this paper, I present the evaluation of a novel knowledge domain visualization of educational technology. The interactive visualization is based on readership patterns in the online reference management system Mendeley. It comprises of 13 topic areas, spanning psychological, pedagogical, and methodological foundations, learning methods and technologies, and social and technological developments. The visualization was evaluated with (1) a qualitative comparison to knowledge domain visualizations based on citations, and (2) expert interviews. The results show that the co-readership visualization is a recent representation of pedagogical and psychological research in educational technology. Furthermore, the co-readership analysis covers more areas than comparable visualizations based on co-citation patterns. Areas related to computer science, however, are missing from the co-readership visualization and more research is needed to explore the interpretations of size and placement of research areas on the map.
2015

Kraker Peter, Schlögl, C. , Jack, K., Lindstaedt Stefanie

The Quest for Keeping an Overview: Knowledge Domain Visualizations based on Co-Readership Patterns

In: Science 2.0, IEEE Computer Society Special Technical Community on Social Networking E-Letter, vol. 3, no. 1, 2015

Journal
Given the enormous amount of scientific knowledge that is produced each and every day, the need for better ways of gaining – and keeping – an overview of research fields is becoming more and more apparent. In a recent paper published in the Journal of Informetrics [1], we analyze the adequacy and applicability of readership statistics recorded in social reference management systems for creating such overviews. First, we investigated the distribution of subject areas in user libraries of educational technology researchers on Mendeley. The results show that around 69% of the publications in an average user library can be attributed to a single subject area. Then, we used co-readership patterns to map the field of educational technology. The resulting knowledge domain visualization, based on the most read publications in this field on Mendeley, reveals 13 topic areas of educational technology research. The visualization is a recent representation of the field: 80% of the publications included were published within ten years of data collection. The characteristics of the readers, however, introduce certain biases to the visualization. Knowledge domain visualizations based on readership statistics are therefore multifaceted and timely, but it is important that the characteristics of the underlying sample are made transparent.
2015

Buschmann Katrin, Kasberger Stefan, Mayer Katja, Reckling Falk, Rieck Katharina, Vignoli Michela, Kraker Peter

Open Science in Austria: Approaches and Status

Information. Wissenschaft und Praxis, DeGruyter, 2015

Journal
Insbesondere in den letzten zwei Jahren hat Österreichim Bereich Open Science, vor allem was Open Accessund Open Data betrifft, nennenswerte Fortschritte gemacht.Die Gründung des Open Access Networks Austria(OANA) und das Anfang 2014 gestartete Projekt e-InfrastructuresAustria können als wichtige Grundsteine fürden Ausbau einer österreichischen Open-Science-Landschaftgesehen werden. Auch das österreichische Kapitelder Open Knowledge Foundation leistet in den BereichenOpen Science Praxis- und Bewusstseinsbildung grundlegendeArbeit. Unter anderem bilden diese Initiativendie Grundlage für den Aufbau einer nationalen Open-Access-Strategie sowie einer ganz Österreich abdeckendenInfrastruktur für Open Access und Open (Research) Data.Dieser Beitrag gibt einen Überblick über diese und ähnlichenationale sowie lokale Open-Science-Projekte und-Initiativen und einen Ausblick in die mögliche Zukunftvon Open Science in Österreich.
2015

Kraker Peter, Lindstaedt Stefanie , Schlögl C, Jack K.

Visualization of co-readership patterns from an online reference management system

Journal of Informetrics, Elsevier, NULL, 2015

Journal
In this paper, we analyze the adequacy and applicability of readership statistics recorded in social reference management systems for creating knowledge domain visualizations. First, we investigate the distribution of subject areas in user libraries of educational technology researchers on Mendeley. The results show that around 69% of the publications in an average user library can be attributed to a single subject area. Then, we use co-readership patterns to map the field of educational technology. The resulting visualization prototype, based on the most read publications in this field on Mendeley, reveals 13 topic areas of educational technology research. The visualization is a recent representation of the field: 80% of the publications included were published within ten years of data collection. The characteristics of the readers, however, introduce certain biases to the visualization. Knowledge domain visualizations based on readership statistics are therefore multifaceted and timely, but it is important that the characteristics of the underlying sample are made transparent.
2015

Parra D., Gomez M., Hutardo D., Wen X., Lin Y., Trattner Christoph

Twitter in academic events: {A} study of temporal usage, communication, and topical patterns in 16 Computer Science conferences

Computer Communications, Elsevier, 2015

Journal
Twitter is often referred to as a backchannel for conferences. While the main conference takes place in a physicalsetting, on-site and off-site attendees socialize, introduce new ideas or broadcast information by microblogging on Twitter.In this paper we analyze scholars’ Twitter usage in 16 Computer Science conferences over a timespan of five years. Ourprimary finding is that over the years there are differences with respect to the uses of Twitter, with an increase ofinformational activity (retweets and URLs), and a decrease of conversational usage (replies and mentions), which alsoimpacts the network structure – meaning the amount of connected components – of the informational and conversationalnetworks. We also applied topic modeling over the tweets’ content and found that when clustering conferences accordingto their topics the resulting dendrogram clearly reveals the similarities and differences of the actual research interests ofthose events. Furthermore, we also analyzed the sentiment of tweets and found persistent differences among conferences.It also shows that some communities consistently express messages with higher levels of emotions while others do it in amore neutral manner. Finally, we investigated some features that can help predict future user participation in the onlineTwitter conference activity. By casting the problem as a classification task, we created a model that identifies factors thatcontribute to the continuing user participation. Our results have implications for research communities to implementstrategies for continuous and active participation among members. Moreover, our work reveals the potential for the useof information shared on Twitter in order to facilitate communication and cooperation among research communities, byproviding visibility to new resources or researchers from relevant but often little known research communities.
2015

Mutlu Belgin, Veas Eduardo Enrique, Trattner Christoph

VizRec: Recommending Personalized Visualizations

ACM Transactions on Interactive Intelligent Systems (TiiS) - Special Issue on Human Interaction with Artificial Advice Givers, ACM, 2015

Journal
Visualizations have a distinctive advantage when dealing with the information overload problem: since theyare grounded in basic visual cognition, many people understand them. However, creating the appropriaterepresentation requires specific expertise of the domain and underlying data. Our quest in this paper is tostudy methods to suggest appropriate visualizations autonomously. To be appropriate, a visualization hasto follow studied guidelines to find and distinguish patterns visually, and encode data therein. Thus, a visu-alization tells a story of the underlying data; yet, to be appropriate, it has to clearly represent those aspectsof the data the viewer is interested in. Which aspects of a visualization are important to the viewer? Canwe capture and use those aspects to recommend visualizations? This paper investigates strategies to recom-mend visualizations considering different aspects of user preferences. A multi-dimensional scale is used toestimate aspects of quality for charts for collaborative filtering. Alternatively, tag vectors describing chartsare used to recommend potentially interesting charts based on content. Finally, a hybrid approach combinesinformation on what a chart is about (tags) and how good it is (ratings). We present the design principlesbehindVizRec, our visual recommender. We describe its architecture, the data acquisition approach with acrowd sourced study, and the analysis of strategies for visualization recommendation
2015

Lex Elisabeth, Dennerlein Sebastian

HowTo: Scientific Work in Interdisciplinary and Distributed Teams

In: Science 2.0, IEEE Computer Society Special Technical Community on Social Networking E-Letter, vol. 3, no. 1, IEEE, 2015

Journal
Today's complex scientific problems often require interdisciplinary, team-oriented approaches: the expertise of researchers from different disciplines is needed to collaboratively reach a solution. Interdisciplinary teams yet face many challenges such as differences in research practice, terminology, communication , and in the usage of tools. In this paper, we therefore study concrete mechanisms and tools of two real-world scientific projects with the aim to examine their efficacy and influence on interdisciplinary teamwork. For our study, we draw upon Bronstein's model of interdisciplinary collaboration. We found that it is key to use suitable environments for communication and collaboration, especially when teams are geographically distributed. Plus, the willingness to share (domain) knowledge is not a given and requires strong common goals and incentives. Besides, structural barriers such as financial aspects can hinder interdisciplinary work, especially in applied, industry funded research. Furthermore, we observed a kind of cold-start problem in interdisciplinary collaboration, when there is no work history and when the disciplines are rather different, e.g. in terms of wording. HowTo: Scientific Work in Interdisciplinary and Distributed Teams (PDF Download Available). Available from: https://www.researchgate.net/publication/282813815_HowTo_Scientific_Work_in_Interdisciplinary_and_Distributed_Teams [accessed Jul 13, 2017].
Kontakt Karriere

Wenn Sie diese Seite nutzen stimmen Sie der Verwendung von Cookies zu mehr Information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close