Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2014

Mutlu Belgin, Tschinkel Gerwald, Veas Eduardo Enrique, Sabol Vedran, Stegmaier Florian, Granitzer Michael

Suggesting visualisations for published data

Information Visualization Theory and Applications (IVAPP), 2014 International Conference on, IEEE, 2014

Konferenz
Research papers are published in various digital libraries, which deploy their own meta-models and tech-nologies to manage, query, and analyze scientific facts therein. Commonly they only consider the meta-dataprovided with each article, but not the contents. Hence, reaching into the contents of publications is inherentlya tedious task. On top of that, scientific data within publications are hardcoded in a fixed format (e.g. tables).So, even if one manages to get a glimpse of the data published in digital libraries, it is close to impossibleto carry out any analysis on them other than what was intended by the authors. More effective querying andanalysis methods are required to better understand scientific facts. In this paper, we present the web-basedCODE Visualisation Wizard, which provides visual analysis of scientific facts with emphasis on automatingthe visualisation process, and present an experiment of its application. We also present the entire analyticalprocess and the corresponding tool chain, including components for extraction of scientific data from publica-tions, an easy to use user interface for querying RDF knowledge bases, and a tool for semantic annotation ofscientific data set
2014

Stegmaier Florian, Seifert Christin, Kern Roman, Höfler Patrick, Bayerl Sebastian, Granitzer Michael, Kosch Harald, Lindstaedt Stefanie , Mutlu Belgin, Sabol Vedran, Schlegel Kai

Unleashing semantics of research data

Specifying Big Data Benchmarks, Springer, Berlin, Heidelberg, 2014

Buch
Research depends to a large degree on the availability and quality of primary research data, i.e., data generated through experiments and evaluations. While the Web in general and Linked Data in particular provide a platform and the necessary technologies for sharing, managing and utilizing research data, an ecosystem supporting those tasks is still missing. The vision of the CODE project is the establishment of a sophisticated ecosystem for Linked Data. Here, the extraction of knowledge encapsulated in scientific research paper along with its public release as Linked Data serves as the major use case. Further, Visual Analytics approaches empower end users to analyse, integrate and organize data. During these tasks, specific Big Data issues are present.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close