Hoffer Johannes Georg, Geiger Bernhard, Ofner Patrick, Kern Roman
2021
The technical world of today fundamentally relies on structural analysis in the form of design and structural mechanic simulations.A traditional and robust simulation method is the physics-based Finite Element Method (FEM) simulation. FEM simulations in structural mechanics are known to be very accurate, however, the higher the desired resolution, the more computational effort is required. Surrogate modeling provides a robust approach to address this drawback. Nonetheless, finding the right surrogate model and its hyperparameters for a specific use case is not a straightforward process.In this paper, we discuss and compare several classes of mesh-free surrogate models based on traditional and thriving Machine Learning (ML) and Deep Learning (DL) methods.We show that relatively simple algorithms (such as $k$-nearest neighbor regression) can be competitive in applications with low geometrical complexity and extrapolation requirements. With respect to tasks exhibiting higher geometric complexity, our results show that recent DL methods at the forefront of literature (such as physics-informed neural networks), are complicated to train and to parameterize and thus require further research before they can be put to practical use. In contrast, we show that already well-researched DL methods such as the multi-layer perceptron are superior with respect to interpolation use cases and can be easily trained with available tools.With our work, we thus present a basis for selection and practical implementation of surrogate models.
Müller-Putz G. R., Ofner P., Schwarz Andreas, Pereira J., Luzhnica Granit, di Sciascio Maria Cecilia, Veas Eduardo Enrique, Stein Sebastian, Williamson John, Murray-Smith Roderick, Escolano C., Montesano L., Hessing B., Schneiders M., Rupp R.
2017
The aim of the MoreGrasp project is to develop a non-invasive, multimodal user interface including a brain-computer interface(BCI)for intuitive control of a grasp neuroprosthesisto supportindividuals with high spinal cord injury(SCI)in everyday activities. We describe the current state of the project, including the EEG system, preliminary results of natural movements decoding in people with SCI, the new electrode concept for the grasp neuroprosthesis, the shared control architecture behind the system and the implementation ofa user-centered design.