Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2017

Rexha Andi, Kröll Mark, Ziak Hermann, Kern Roman

Pilot study: Ranking of textual snippets based on the writing style

Zenodo, 2017

In this pilot study, we tried to capture humans' behavior when identifying authorship of text snippets. At first, we selected textual snippets from the introduction of scientific articles written by single authors. Later, we presented to the evaluators a source and four target snippets, and then, ask them to rank the target snippets from the most to the least similar from the writing style.The dataset is composed by 66 experiments manually checked for not having any clear hint during the ranking for the evaluators. For each experiment, we have evaluations from three different evaluators.We present each experiment in a single line (in the CSV file), where, at first we present the metadata of the Source-Article (Journal, Title, Authorship, Snippet), and the metadata for the 4 target snippets (Journal, Title, Authorship, Snippet, Written From the same Author, Published in the same Journal) and the ranking given by each evaluator. This task was performed in the open source platform, Crowd Flower. The headers of the CSV are self-explained. In the TXT file, you can find a human-readable version of the experiment. For more information about the extraction of the data, please consider reading our paper: "Extending Scientific Literature Search by Including the Author’s Writing Style" @BIR: http://www.gesis.org/en/services/events/events-archive/conferences/ecir-workshops/ecir-workshop-2017
2017

Rexha Andi, Kröll Mark, Ziak Hermann, Kern Roman

Extending Scientific Literature Search by Including the Author’s Writing Style

Fifth Workshop on Bibliometric-enhanced Information Retrieval, Atanassova, I.; Bertin, M.; Mayr, P., Springer, Aberdeen, UK, 2017

Konferenz
Our work is motivated by the idea to extend the retrieval of related scientific literature to cases, where the relatedness also incorporates the writing style of individual scientific authors. Therefore we conducted a pilot study to answer the question whether humans can identity authorship once the topological clues have been removed. As first result, we found out that this task is challenging, even for humans. We also found some agreement between the annotators. To gain a better understanding how humans tackle such a problem, we conducted an exploratory data analysis. Here, we compared the decisions against a number of topological and stylometric features. The outcome of our work should help to improve automatic authorship identificationalgorithms and to shape potential follow-up studies.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close