Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen


Kopeinik Simone, Lex Elisabeth, Kowald Dominik, Albert Dietrich, Seitlinger Paul

A Real-Life School Study of Confirmation Bias and Polarisation in Information Behaviou

Lecture Notes in Computer Science, Springer, 2019

When people engage in Social Networking Sites, they influence one another through their contributions. Prior research suggests that the interplay between individual differences and environmental variables, such as a person’s openness to conflicting information, can give rise to either public spheres or echo chambers. In this work, we aim to unravel critical processes of this interplay in the context of learning. In particular, we observe high school students’ information behavior (search and evaluation of Web resources) to better understand a potential coupling between confirmatory search and polarization and, in further consequence, improve learning analytics and information services for individual and collective search in learning scenarios. In an empirical study, we had 91 high school students performing an information search in a social bookmarking environment. Gathered log data was used to compute indices of confirmatory search and polarisation as well as to analyze the impact of social stimulation. We find confirmatory search and polarization to correlate positively and social stimulation to mitigate, i.e., reduce the two variables’ relationship. From these findings, we derive practical implications for future work that aims to refine our formalism to compute confirmatory search and polarisation indices and to apply it for depolarizing information services

Kopeinik Simone, Seitlinger Paul, Lex Elisabeth

A Study of Confirmation Bias and Polarization in Information Behavio

European Symposium on Computational Social Science (EuroCSS, Zurich, Switzerlan, 2019


Kopeinik Simone, Lex Elisabeth, Seitlinger Paul, Ley Tobias, Albert Dietrich

Supporting collaborative learning with tag recommendations: a real-world study in an inquiry-based classroom project

Proceedings of the 7th International Conference on Learning Analytics and Knowledge (LAK 2017), ACM, Vancouver, 2017

In online social learning environments, tagging has demonstratedits potential to facilitate search, to improve recommendationsand to foster reflection and learning.Studieshave shown that shared understanding needs to be establishedin the group as a prerequisite for learning. We hypothesisethat this can be fostered through tag recommendationstrategies that contribute to semantic stabilization.In this study, we investigate the application of two tag recommendersthat are inspired by models of human memory:(i) the base-level learning equation BLL and (ii) Minerva.BLL models the frequency and recency of tag use while Minervais based on frequency of tag use and semantic context.We test the impact of both tag recommenders on semanticstabilization in an online study with 56 students completinga group-based inquiry learning project in school. Wefind that displaying tags from other group members contributessignificantly to semantic stabilization in the group,as compared to a strategy where tags from the students’individual vocabularies are used. Testing for the accuracyof the different recommenders revealed that algorithms usingfrequency counts such as BLL performed better whenindividual tags were recommended. When group tags wererecommended, the Minerva algorithm performed better. Weconclude that tag recommenders, exposing learners to eachother’s tag choices by simulating search processes on learners’semantic memory structures, show potential to supportsemantic stabilization and thus, inquiry-based learning ingroups.

Kowald Dominik, Kopeinik Simone , Lex Elisabeth

The TagRec Framework as a Toolkit for the Development of Tag-Based Recommender Systems

International Conference on User Modeling, Adaptation and Personalization 2017, UMAP'2017, ACM, Bratislava, 2017

Recommender systems have become important tools to supportusers in identifying relevant content in an overloaded informationspace. To ease the development of recommender systems, a numberof recommender frameworks have been proposed that serve a widerange of application domains. Our TagRec framework is one of thefew examples of an open-source framework tailored towards developingand evaluating tag-based recommender systems. In this paper,we present the current, updated state of TagRec, and we summarizeand reƒect on four use cases that have been implemented withTagRec: (i) tag recommendations, (ii) resource recommendations,(iii) recommendation evaluation, and (iv) hashtag recommendations.To date, TagRec served the development and/or evaluation processof tag-based recommender systems in two large scale Europeanresearch projects, which have been described in 17 research papers.‘us, we believe that this work is of interest for both researchersand practitioners of tag-based recommender systems.

Kopeinik Simone, Kowald Dominik, Hasani-Mavriqi Ilire, Lex Elisabeth

Improving Collaborative Filtering Using a Cognitive Model of Human Category Learning

Journal of WebScience, James Finlay, Now publishing, 2016

Classic resource recommenders like Collaborative Filteringtreat users as just another entity, thereby neglecting non-linear user-resource dynamics that shape attention and in-terpretation. SUSTAIN, as an unsupervised human cate-gory learning model, captures these dynamics. It aims tomimic a learner’s categorization behavior. In this paper, weuse three social bookmarking datasets gathered from Bib-Sonomy, CiteULike and Delicious to investigate SUSTAINas a user modeling approach to re-rank and enrich Collab-orative Filtering following a hybrid recommender strategy.Evaluations against baseline algorithms in terms of recom-mender accuracy and computational complexity reveal en-couraging results. Our approach substantially improves Col-laborative Filtering and, depending on the dataset, success-fully competes with a computationally much more expen-sive Matrix Factorization variant. In a further step, we ex-plore SUSTAIN’s dynamics in our specific learning task andshow that both memorization of a user’s history and clus-tering, contribute to the algorithm’s performance. Finally,we observe that the users’ attentional foci determined bySUSTAIN correlate with the users’ level of curiosity, iden-tified by the SPEAR algorithm. Overall, the results ofour study show that SUSTAIN can be used to efficientlymodel attention-interpretation dynamics of users and canhelp improve Collaborative Filtering for resource recommen-dations.

Kowald Dominik, Lex Elisabeth, Kopeinik Simone

Which Algorithms Suit Which Learning Environments? A Comparative Study of Recommender Systems in TEL

European Conference on Technology Enhanced Learning, EC-TEL'2016, Springer, Toledo, Spain, 2016

In recent years, a number of recommendation algorithmshave been proposed to help learners find suitable learning resources online.Next to user-centered evaluations, offline-datasets have been usedto investigate new recommendation algorithms or variations of collaborativefiltering approaches. However, a more extensive study comparinga variety of recommendation strategies on multiple TEL datasets ismissing. In this work, we contribute with a data-driven study of recommendationstrategies in TEL to shed light on their suitability forTEL datasets. To that end, we evaluate six state-of-the-art recommendationalgorithms for tag and resource recommendations on six empiricaldatasets: a dataset from European Schoolnets TravelWell, a dataset fromthe MACE portal, which features access to meta-data-enriched learningresources from the field of architecture, two datasets from the socialbookmarking systems BibSonomy and CiteULike, a MOOC dataset fromthe KDD challenge 2015, and Aposdle, a small-scale workplace learningdataset. We highlight strengths and shortcomings of the discussed recommendationalgorithms and their applicability to the TEL datasets.Our results demonstrate that the performance of the algorithms stronglydepends on the properties and characteristics of the particular dataset.However, we also find a strong correlation between the average numberof users per resource and the algorithm performance. A tag recommenderevaluation experiment reveals that a hybrid combination of a cognitiveinspiredand a popularity-based approach consistently performs best onall TEL datasets we utilized in our study.

Kowald Dominik, Seitlinger Paul, Kopeinik Simone, Ley Tobias, Trattner Christoph

Forgetting the Words but Remembering the Meaning: Modeling Forgetting in a Verbal and Semantic Tag Recommender

Mining, Modeling, and Recommending'Things' in Social Media, MSM'2015, Springer, 2015

We assume that recommender systems are more successful,when they are based on a thorough understanding of how people processinformation. In the current paper we test this assumption in the contextof social tagging systems. Cognitive research on how people assign tagshas shown that they draw on two interconnected levels of knowledge intheir memory: on a conceptual level of semantic fields or LDA topics,and on a lexical level that turns patterns on the semantic level intowords. Another strand of tagging research reveals a strong impact oftime-dependent forgetting on users' tag choices, such that recently usedtags have a higher probability being reused than "older" tags. In thispaper, we align both strands by implementing a computational theory ofhuman memory that integrates the two-level conception and the processof forgetting in form of a tag recommender. Furthermore, we test theapproach in three large-scale social tagging datasets that are drawn fromBibSonomy, CiteULike and Flickr.As expected, our results reveal a selective effect of time: forgetting ismuch more pronounced on the lexical level of tags. Second, an extensiveevaluation based on this observation shows that a tag recommender interconnectingthe semantic and lexical level based on a theory of humancategorization and integrating time-dependent forgetting on the lexicallevel results in high accuracy predictions and outperforms other wellestablishedalgorithms, such as Collaborative Filtering, Pairwise InteractionTensor Factorization, FolkRank and two alternative time-dependentapproaches. We conclude that tag recommenders will benefit from goingbeyond the manifest level of word co-occurrences, and from includingforgetting processes on the lexical level.

Seitlinger Paul, Kowald Dominik, Kopeinik Simone, Hasani-Mavriqi Ilire, Ley Tobias, Lex Elisabeth

Attention Please! A Hybrid Resource Recommender Mimicking Attention-Interpretation Dynamics

In 24rd International World Wide Web Conference, Web-Science Track, Aldo Gangemi, Stefano Leonardi and Alessandro Panconesi, ACM, Florence, 2015

Classic resource recommenders like Collaborative Filtering(CF) treat users as being just another entity, neglecting non-linear user-resource dynamics shaping attention and inter-pretation. In this paper, we propose a novel hybrid rec-ommendation strategy that re nes CF by capturing thesedynamics. The evaluation results reveal that our approachsubstantially improves CF and, depending on the dataset,successfully competes with a computationally much moreexpensive Matrix Factorization variant.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.