Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2018

Hasani-Mavriqi Ilire, Kowald Dominik, Helic Denis, Lex Elisabeth

Consensus Dynamics in Online Collaboration Systems

Journal of Computational Social Networks , Ding-Zhu Du and My T. Thai, Springer Open, 2018

Journal
In this paper, we study the process of opinion dynamics and consensus building inonline collaboration systems, in which users interact with each other followingtheir common interests and their social pro les. Speci cally, we are interested inhow users similarity and their social status in the community, as well as theinterplay of those two factors inuence the process of consensus dynamics. Forour study, we simulate the di usion of opinions in collaboration systems using thewell-known Naming Game model, which we extend by incorporating aninteraction mechanism based on user similarity and user social status. Weconduct our experiments on collaborative datasets extracted from the Web. Our ndings reveal that when users are guided by their similarity to other users, theprocess of consensus building in online collaboration systems is delayed. Asuitable increase of inuence of user social status on their actions can in turnfacilitate this process. In summary, our results suggest that achieving an optimalconsensus building process in collaboration systems requires an appropriatebalance between those two factors.
2017

Santos Tiago, Walk Simon, Helic Denis

Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites

WWW '17 Companion Proceedings of the 26th International Conference on World Wide Web Companion, International World Wide Web Conferences Steering Committee, Perth, Australia, 2017

Konferenz
Modeling activity in online collaboration websites, such asStackExchange Question and Answering portals, is becom-ing increasingly important, as the success of these websitescritically depends on the content contributed by its users. Inthis paper, we represent user activity as time series and per-form an initial analysis of these time series to obtain a bet-ter understanding of the underlying mechanisms that governtheir creation. In particular, we are interested in identifyinglatent nonlinear behavior in online user activity as opposedto a simpler linear operating mode. To that end, we applya set of statistical tests for nonlinearity as a means to char-acterize activity time series derived from 16 different onlinecollaboration websites. We validate our approach by com-paring activity forecast performance from linear and nonlin-ear models, and study the underlying dynamical systems wederive with nonlinear time series analysis. Our results showthat nonlinear characterizations of activity time series helpto (i) improve our understanding of activity dynamics in on-line collaboration websites, and (ii) increase the accuracy offorecasting experiments.
2016

Stanisavljevic Darko, Hasani-Mavriqi Ilire, Lex Elisabeth, Strohmaier Markus, Helic Denis

Semantic Stability in Wikipedia

Complex Networks and their Applications, Cherifi, H., Gaito, S., Quattrociocchi, W., Sala, A., Springer International Publishing AG, Cham, Switzerland, 2016

Konferenz
In this paper we assess the semantic stability of Wikipedia by investigat-ing the dynamics of Wikipedia articles’ revisions over time. In a semantically stablesystem, articles are infrequently edited, whereas in unstable systems, article contentchanges more frequently. In other words, in a stable system, the Wikipedia com-munity has reached consensus on the majority of articles. In our work, we measuresemantic stability using the Rank Biased Overlap method. To that end, we prepro-cess Wikipedia dumps to obtain a sequence of plain-text article revisions, whereaseach revision is represented as a TF-IDF vector. To measure the similarity betweenconsequent article revisions, we calculate Rank Biased Overlap on subsequent termvectors. We evaluate our approach on 10 Wikipedia language editions includingthe five largest language editions as well as five randomly selected small languageeditions. Our experimental results reveal that even in policy driven collaborationnetworks such as Wikipedia, semantic stability can be achieved. However, there aredifferences on the velocity of the semantic stability process between small and largeWikipedia editions. Small editions exhibit faster and higher semantic stability than large ones. In particular, in large Wikipedia editions, a higher number of successiverevisions is needed in order to reach a certain semantic stability level, whereas, insmall Wikipedia editions, the number of needed successive revisions is much lowerfor the same level of semantic stability.
2016

Hasani-Mavriqi Ilire, Geigl Florian, Pujari Subhash Chandra , Lex Elisabeth, Helic Denis

The Influence of Social Status and Network Structure on Consensus Building in Collaboration Networks

Social Network Analysis and Mining, Reda Alhajj, Springer Vienna, 2016

Journal
In this paper, we study the process of opinion dynamics and consensus building in online collaboration systems, in which users interact with each other following their common interests and their social profiles. Specifically, we are interested in how users similarity and their social status in the community, as well as the interplay of those two factors influence the process of consensus dynamics. For our study, we simulate the diffusion of opinions in collaboration systems using the well-known Naming Game model, which we extend by incorporating an interaction mechanism based on user similarity and user social status. We conduct our experiments on collaborative datasets extracted from the Web. Our findings reveal that when users are guided by their similarity to other users, the process of consensus building in online collaboration systems is delayed. A suitable increase of influence of user social status on their actions can in turn facilitate this process. In summary, our results suggest that achieving an optimal consensus building process in collaboration systems requires an appropriate balance between those two factors.
2015

Hasani-Mavriqi Ilire, Geigl Florian, Pujari Subhash Chandra, Lex Elisabeth, Helic Denis

Influence of Status Social on Consensus Building in Collaboration Networks

In Proceedings of the IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2015), Jian Pei, Fabrizio Silvestri and Jie Tang, ACM/IEEE, Paris, France, 2015

Konferenz
In this paper, we analyze the influence of social status on opinion dynamics and consensus building in collaboration networks. To that end, we simulate the diffusion of opinions in empirical collaboration networks by taking into account both the network structure and the individual differences of people reflected through their social status. For our simulations, we adapt a well-known Naming Game model and extend it with the Probabilistic Meeting Rule to account for the social status of individuals participating in a meeting. This mechanism is sufficiently flexible and allows us to model various situations in collaboration networks, such as the emergence or disappearance of social classes. In this work, we concentrate on studying three well-known forms of class society: egalitarian, ranked and stratified. In particular, we are interested in the way these society forms facilitate opinion diffusion. Our experimental findings reveal that (i) opinion dynamics in collaboration networks is indeed affected by the individuals’ social status and (ii) this effect is intricate and non-obvious. In particular, although the social status favors consensus building, relying on it too strongly can slow down the opinion diffusion, indicating that there is a specific setting for each collaboration network in which social status optimally benefits the consensus building process.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close