Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2010

Lindstaedt Stefanie , Rath Andreas S., Devaurs Didier

Studying the Factors Influencing Automatic User Task Detection on the Computer Desktop

Sustaining TEL: From Innovation to Learning and Practice, Lecture Notes in Computer Science, Springer, 2010

. Supporting learning activities during work has gained momentum fororganizations since work-integrated learning (WIL) has been shown to increaseproductivity of knowledge workers. WIL aims at fostering learning at the workplace,during work, for enhancing task performance. A key challenge for enablingtask-specific, contextualized, personalized learning and work support is to automaticallydetect the user’s task. In this paper we utilize our ontology-based usertask detection approach for studying the factors influencing task detection performance.We describe three laboratory experiments we have performed in twodomains including over 40 users and more than 500 recorded task executions.The insights gained from our evaluation are: (i) the J48 decision tree and Na¨ıveBayes classifiers perform best, (ii) six features can be isolated, which providegood classification accuracy, (iii) knowledge-intensive tasks can be classified aswell as routine tasks and (iv) a classifier trained by experts on standardized taskscan be used to classify users’ personal tasks.
2010

Pozzi, Francesca, Persico, Donatella, Fischer, Frank, Hofmann, Lena, Lindstaedt Stefanie , Cress, Ulrike, Rath Andreas S., Moskaliuk, Johannes, Weber, Nicolas, Kimmerle, Joachim, Devaurs Didier, Ney, Muriel, Gonçalves, Celso, Balacheff, Nicolas, Schwartz, Claudine, Bosson, Jean-Luc, Dillenbourg, Pierre, Jermann, Patrick, Zufferey, Guillaume, Brown, Elisabeth, Sharples, Mike, Windrum, Caroline, Specht, Marcus, Börner, Dirk, Glahn, Christian, Fiedler, Sebastian, Fisichella, Marco, Herder, Eelco, Marenzi, Ivana, Nejdl, Wolfgang, Kawese, Ricardo, Papadakis, George

D1.2 Trends in Connecting Learners. First Research & Technology Scouting Report

2010

In this first STELLAR trend report we survey the more distant future of TEL, as reflected in the roadmaps; we compare the visions with trends in TEL research and TEL practice. This generic overview is complemented by a number of small-scale studies, which focus on a specific technology, approach or pedagogical model.
2009

Lindstaedt Stefanie , Rath Andreas S., Devaurs Didier

UICO: An Ontology-Based User Interaction Context Model for Automatic Task Detection on the Computer Desktop

Proceedings of the Context Information and Ontology (CIAO2009) workshop as part of the ESWC 2009, Gomez-Perez, J. M., Haase, P., Tilly, M., Warren, P., ACM, 2009

Konferenz
‘Understanding context is vital’ [1] and ‘context is key’ [2]signal the key interest in the context detection field. Oneimportant challenge in this area is automatically detectingthe user’s task because once it is known it is possible tosupport her better. In this paper we propose an ontologybaseduser interaction context model (UICO) that enhancesthe performance of task detection on the user’s computerdesktop. Starting from low-level contextual attention metadatacaptured from the user’s desktop, we utilize rule-based,information extraction and machine learning approaches toautomatically populate this user interaction context model.Furthermore we automatically derive relations between themodel’s entities and automatically detect the user’s task.We present evaluation results of a large-scale user study wecarried out in a knowledge-intensive business environment,which support our approach.
2009

Gras R., Devaurs Didier, Wozniak A., Aspinall A.

An Individual-Based Evolving Predator-Prey Ecosystem Simulation Using a Fuzzy Cognitive Map as the Behavior Model

Artificial Life, Massachusetts Institute of Technology, 2009

Journal
We present an individual-based predator-prey model with, for the first time, each agent behavior being modeled by a fuzzy cognitive map (FCM), allowing the evolution of the agent behavior through the epochs of the simulation. The FCM enables the agent to evaluate its environment (e.g., distance to predator or prey, distance to potential breeding partner, distance to food, energy level) and its internal states (e.g., fear, hunger, curiosity), and to choose several possible actions such as evasion, eating, or breeding. The FCM of each individual is unique and is the result of the evolutionary process. The notion of species is also implemented in such a way that species emerge from the evolving population of agents. To our knowledge, our system is the only one that allows the modeling of links between behavior patterns and speciation. The simulation produces a lot of data, including number of individuals, level of energy by individual, choice of action, age of the individuals, and average FCM associated with each species. This study investigates patterns of macroevolutionary processes, such as the emergence of species in a simulated ecosystem, and proposes a general framework for the study of specific ecological problems such as invasive species and species diversity patterns. We present promising results showing coherent behaviors of the whole simulation with the emergence of strong correlation patterns also observed in existing ecosystems.
2009

Granitzer Michael, Rath Andreas S., Kröll Mark, Ipsmiller D., Devaurs Didier, Weber Nicolas, Lindstaedt Stefanie , Seifert C.

Machine Learning based Work Task Classification

Journal of Digital Information Management, 2009

Journal
Increasing the productivity of a knowledgeworker via intelligent applications requires the identification ofa user’s current work task, i.e. the current work context a userresides in. In this work we present and evaluate machine learningbased work task detection methods. By viewing a work taskas sequence of digital interaction patterns of mouse clicks andkey strokes, we present (i) a methodology for recording thoseuser interactions and (ii) an in-depth analysis of supervised classificationmodels for classifying work tasks in two different scenarios:a task centric scenario and a user centric scenario. Weanalyze different supervised classification models, feature typesand feature selection methods on a laboratory as well as a realworld data set. Results show satisfiable accuracy and high useracceptance by using relatively simple types of features.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close