Publikationen

Hier finden Sie von Know-Center MitarbeiterInnen verfasste wissenschaftliche Publikationen

2018

Lovric Mario, Krebs Sarah, Cemernek David, Kern Roman

BIG DATA IN INDUSTRIAL APPLICATION

XII Meeting of Young Chemical Engineers, Zagreb, Kroatien, 2018

Konferenz
The use of big data technologies has a deep impact on today’s research (Tetko et al., 2016) and industry (Li et al., n.d.), but also on public health (Khoury and Ioannidis, 2014) and economy (Einav and Levin, 2014). These technologies are particularly important for manufacturing sites, where complex processes are coupled with large amounts of data, for example in chemical and steel industry. This data originates from sensors, processes. and quality-testing. Typical application of these technologies is related to predictive maintenance and optimisation of production processes. Media makes the term “big data” a hot buzzword without going to deep into the topic. We noted a lack in user’s understanding of the technologies and techniques behind it, making the application of such technologies challenging. In practice the data is often unstructured (Gandomi and Haider, 2015) and a lot of resources are devoted to cleaning and preparation, but also to understanding causalities and relevance among features. The latter one requires domain knowledge, making big data projects not only challenging from a technical perspective, but also from a communication perspective. Therefore, there is a need to rethink the big data concept among researchers and manufacturing experts including topics like data quality, knowledge exchange and technology required. The scope of this presentation is to present the main pitfalls in applying big data technologies amongst users from industry, explain scaling principles in big data projects, and demonstrate common challenges in an industrial big data project
2017

Gursch Heimo, Cemernek David, Kern Roman

Multi-Loop Feedback Hierarchy Involving Human Workers in Manufacturing Processes

Mensch und Computer 2017 - Workshopband, Manuel Burghardt, Raphael Wimmer, Christian Wolff, Christa Womser-Hacker, Gesellschaft für Informatik e.V., Regensburg, 2017

Konferenz
In manufacturing environments today, automated machinery works alongside human workers. In many cases computers and humans oversee different aspects of the same manufacturing steps, sub-processes, and processes. This paper identifies and describes four feedback loops in manufacturing and organises them in terms of their time horizon and degree of automation versus human involvement. The data flow in the feedback loops is further characterised by features commonly associated with Big Data. Velocity, volume, variety, and veracity are used to establish, describe and compare differences in the data flows.
2017

Cemernek David, Gursch Heimo, Kern Roman

Big Data as a Promoter of Industry 4.0: Lessons of the Semiconductor Industry

IEEE 15th International Conference of Industrial Informatics - INDIN'2017, IEEE, Emden, Germany, 2017

Konferenz
The catchphrase “Industry 4.0” is widely regarded as a methodology for succeeding in modern manufacturing. This paper provides an overview of the history, technologies and concepts of Industry 4.0. One of the biggest challenges to implementing the Industry 4.0 paradigms in manufacturing are the heterogeneity of system landscapes and integrating data from various sources, such as different suppliers and different data formats. These issues have been addressed in the semiconductor industry since the early 1980s and some solutions have become well-established standards. Hence, the semiconductor industry can provide guidelines for a transition towards Industry 4.0 in other manufacturing domains. In this work, the methodologies of Industry 4.0, cyber-physical systems and Big data processes are discussed. Based on a thorough literature review and experiences from the semiconductor industry, we offer implementation recommendations for Industry 4.0 using the manufacturing process of an electronics manufacturer as an example.
Kontakt Karriere

Hiermit erkläre ich ausdrücklich meine Einwilligung zum Einsatz und zur Speicherung von Cookies. Weiter Informationen finden sich unter Datenschutzerklärung

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close