Accelerating K-Means on the Graphics Processor via CUDA

Mario Zechner
Know-Center
Inffeldgasse 21a
8010 Graz, Austria
mzechner @know-center.at

Abstract

In this paper an optimized k-means implementation on
the graphics processing unit (GPU) is presented. NVIDIA’s
Compute Unified Device Architecture (CUDA), available
from the G80 GPU family onwards, is used as the program-
ming environment. Emphasis is placed on optimizations di-
rectly targeted at this architecture to best exploit the com-
putational capabilities available. Additionally drawbacks
and limitations of previous related work, e.g. maximum in-
stance, dimension and centroid count are addressed. The
algorithm is realized in a hybrid manner, parallelizing dis-
tance calculations on the GPU while sequentially updating
cluster centroids on the CPU based on the results from the
GPU calculations. An empirical performance study on syn-
thetic data is given, demonstrating a maximum 14x speed
increase to a fully SIMD optimized CPU implementation.

1 Introduction

In the last decades the immense growth of data has be-
come a driving force to develop scalable data mining meth-
ods. Machine learning algorithms have been adapted to bet-
ter cope with the mass of data being processed. Various op-
timization techniques lead to improvements in performance
and scalability among which parallelization is one valuable
option.

One of the many data mining methods widely in use is
partitional clustering which is formally defined as "the or-
ganization of a collection of patterns (usually represented
as a vector of measurements, or a point in a multidimen-
sional space) into clusters based on similarity” [1]. The
application of clustering is widespread among many differ-
ent fields, such as computer vision [2], computational biol-
ogy [3][4] or text mining [5]. A non-optimal solution to the
NP-hard problem of partitional clustering was proposed by
Lloyd in [6] who’s most well known variant is the k-means
algorithm in [7]. The popularity of k-means is explain-

Michael Granitzer
Know-Center
Inffeldgasse 21a
8010 Graz, Austria
mgrani @know-center.at

able by its low implementational complexity and well un-
derstood mathematical properties. However, k-means will
only find non-optimal local-minima, depending on the ini-
tial configuration of centroids. This is also known as the
seeding problem and was addressed in various works. Re-
cently a new strategy yielding better clustering results was
introduced in [8]. Still, the run-time performance of k-
means is a concern as data is growing rapidly, especially
when finding the correct parameter of k can only be done
by performing several runs with different numbers of clus-
ters and initial seedings.

With the appearance of programmable graphics hard-
ware in 2001, using the GPU as a low-cost highly paral-
lel streaming co-processor became a valuable option. In
the following years scientific interest in this new architec-
ture resulted in numerous publications demonstrating the
advantages of GPUs over CPUs when used for data paral-
lel tasks. Much attention was focused on transferring com-
mon parallel processing primitives to the GPU and creat-
ing frameworks to allow for more general purpose program-
ming [9][10]. The most problematic aspect of this undertak-
ings was transforming the problems at hand into a graphics
pipeline friendly format, a task needing knowledge about
graphics programming. The reader shall be referred to [11]
where an in-depth discussion on mapping computational
concepts to the GPU can be found. This entry barrier was
recently lowered by the introduction of NVIDIA’s CUDA
[12] as well as ATI’s Close to Metal Initiative [13]. Both
were designed to enable direct exploitation of the hard-
ware’s capabilities circumnavigating the invocation of the
graphics pipeline via an API such as OpenGL or DirectX.
In this work CUDA was chosen due to its more favorable
properties, namely the high-level approach employed by its
seamless integration with C and the quality of its documen-
tation.

In this paper a parallel implementation of k-means on
the GPU via CUDA is discussed. Section 3 discusses the
sequential and parallel variants of k-means leading to sec-
tion 2 where related work is investigated. Section 4 gives

| Takizawa and Kobayashi [14] | Hall and Hart [15] \ Cao et. al. [16] \
CPU Intel P4 3.2 Ghz AMD Athlon 2800+ Intel P4 3.4 Ghz
Compiler GNU C++3.3.5 ? Intel C++
Optimizations SSE2 ? SSE2, Hyper-Threading
GPU || NVIDIA Geforce 6600 Ultra | NVIDIA GeforceFX 5900 | NVIDIA Geforce 6800 GT
Speedup 4 2-3 4

Table 1. Summary of previous GPU-based k-means implementations. The column speedup gives the
relative speedup of the GPU version to the CPU version based on total runtime

an overview of CUDA’s properties and programming model
followed by section 5 describing the concrete parallel im-
plementation of k-means on the GPU. A comparison of the
GPU implementation versus an optimized sequential CPU
implementation is given in section 6. Finally, section 7 con-
cludes this paper.

2 Related Work

To the best of the authors’ knowledge, three different
implementations of k-means on the GPU exist. All three
implementations are similar to the parallel k-means imple-
mentation outlined in section 3.3 formulated as a graphics
programming problem.

In [14] Takizawa and Kobayashi try to overcome the
limitations imposed by the maximum texture size by split-
ting the data set and distributing it to several systems each
housing a GPU. A solution to this problem via a multi-pass
mechanism was not considered. Also the limitation on the
maximum number of dimensions was not tackled. It is also
not stated whether the GPU implementation produces the
same results as the CPU implementation in terms of preci-
sion.

Hall and Hart propose two theoretical options for solv-
ing the problem of limited instance counts and dimension-
ality: multi-pass labeling and a different data layout within
the texture [15]. None of the approaches have been imple-
mented though. In addition to the naive k-means imple-
mentation the data is reordered to minimize the number of
distance calculations by only calculating the metrics to the
nearest centroids. This is achieved by finding those cen-
troids by traversing a previously constructed kd-tree. The
authors could not observe any problems caused by the non
standard compliant floating point arithmetic implementa-
tions on the GPU, stating that the exact same clusterings
have been found.

The approach of Cao et. al. in [16] differs in that the
centroid indices are stored in an 8-bit stencil buffer instead
of the frame buffer limiting the number of total centroids to
256. Limitations in dimensionality and instance counts due
to maximum texture sizes are solved via a costly multi-pass

approach. No statements concerning precision of the GPU
version were made.

Summarizing the presented previous work the following
can be observed:

e All implementations suffer from architectural con-
straints such as maximum texture size limiting the
number of instances, dimensions and clusters. The
limitations can only be overcome by employing more
costly multi-pass approaches.

e Not all publications state the exact conditions the im-
plementations were tested under. A direct comparison
is not strictly possible. However, the given numbers
indicate congruent results yielding an average speedup
of a factor between 3 to 4.

e The GPU implementation’s performance increases as
the problem at hand grows bigger in dimensionality as
well as instance and centroid count.

e Only one paper mentioned potential impact of the non
standard-compliant floating point arithemtics imple-
mented on GPU’s. No effects have been observed.

Based on the previous work the main contributions of
this paper are as follows:

1. A parallel implementation of standard k-means on
NVIDIA’s G80 GPU generation using the non-
graphics oriented programming model of CUDA.

2. Removal of the limitations inherent to classical
graphics-based GPGPU programming approaches for
k-means, namely the number of instances, dimensions
and centroids enabling large scale clustering problems
to be tackled on the GPU.

3. Investigation of precision issues due to the non IEEE
single precision floating point compliance of modern
GPU’s.

4. Performance evaluation of the presented implementa-
tion in comparison to an aggressively optimized single

core CPU implementation, using SSE3 vectorization
as well as loop unrolling optimizations, showing high
speedups when compared to the average speedup of
previous GPU-based implementations.

5. Evaluation of on-chip memory throughput as well as
floating point operation performance.

3 K-Means Clustering

In this section a definition of the k-means problem is
given as well as non-optimal sequential and parallel algo-
rithmic solutions. Additionally the computational complex-
ity is discussed.

3.1 Problem Definition

The k-means problem can be defined as follows: a set
X of n data points x; € R% 4 = 1,...,n as well as the
number of clusters & € N* < n is given. A cluster C; C
X,j7 =1,...,k with a centroid c¢; € R? is composed of
all points in X for which c;j is the nearest centroid using
euclidean distance. The optimal set C of k centroids can be
found by minimizing the following potential function:

¢ =) minD(x;,c;)’ (1)
i=1 °

D is a metric in RY, usually the euclidean distance. Solv-
ing equation 1 even for two clusters was proven to be NP-
hard in [17]. However, a non-optimal solution for the k-
means problem exists and will be described in the follow-
ing section. For the rest of the discussion it is assumed that
the set of data points & is already available in-core, that is
loaded to memory.

3.2 Sequential K-Means

In [7] MacQueen describes an algorithm that locally im-
proves some clustering C by iteratively refining it. An initial
clustering C is created by choosing & random centroids from
the set of data points X. This is known as the seeding stage.
Next a labeling stage is executed where each data point
x; € X is assigned to the cluster C; for which D(x;, c;)
is minimal. Each centroid c; is then recalculated by the
mean of all data points x; € C; via cj = ﬁ ineCJ Xj.
The labeling and centroid update stage are executed repeat-
edly until C no longer changes. This procedure is known to
converge to a local minimum subject to the initial seeding
[18]. Algorithm 1 describes the procedure in algorithmic
terms. The next section demonstrates how this sequential
algorithm can be transformed into a parallel implementa-
tion.

Algorithm 1 Sequential K-Means Algorithm
cj«—randomx; € X,j=1,...,k st.cj #c;Vi #J
repeat

Ci—0,5=1,....k
for all x; € X do
j < argminD(c;, x;)
Cj — Cj Ux;
end for
for all c; € C do
Cj — ﬁ inecj Xi
end for
until convergence

3.3 Parallel K-Means

In [19] Dhillon presents a parallel implementation of k-
means on distributed memory multiprocessors. The label-
ing stage is identified as being inherently data parallel. The
set of data points X is split up equally among p processors,
each calculating the labels of all data points of their subset
of X. In a reduction step the centroids are then updated ac-
cordingly. It has been shown that the relative speedup com-
pared to a sequential implementation of k-means increases
nearly linearly with the number of processors. Performance
penalties introduced by communication cost between the
processors in the reduction step can be neglected for large
n.

Algorithm 2 Parallel K-Means Algorithm
if threadld = O then
cj«randomx; € X,j=1,... k,st.c; #Zc;Vi # j
end if
synchronize threads
repeat
for all x; € Xipreadarqa do
l; — argminD(c;, x;)
end for
synchronize threads
if threadld=0 then
for all x; € X do
Cy < C;, +Xj
my, < my, +1
end for
for all c; € C do
1

Cj — ECi

end for
if convergence then
signal threads to terminate
end if
end if
until convergence

Since the GPU is a shared memory multiprocessor ar-
chitecture this section briefly outlines a parallel implemen-
tation on such a machine. It only slightly diverges from the
approach proposed by Dhillon. Processors are now called
threads and a master-slave model is employed. Each thread
is assigned an identifier between 0 and ¢ — 1 where ¢ de-
notes the number of threads. Thread O is considered the
master thread, all other threads are slaves. Threads share
some memory within which the set of data points X, the set
of current centroids C as well as the clusters C; reside. Each
thread additionally owns local memory for miscellaneous
data. It is further assumed that locking mechanisms for con-
current memory access are available. Given this setup the
sequential algorithm can be mapped to this programming
model as follows.

The master thread initializes the centroids as it is done
in the sequential version of k-means. Next X is partitioned
into subsets &;,7 = 0, ... t. This is merely an offset and
range calculation each thread executes giving those x; each
thread processes in the labeling stage. All threads execute
the labeling stage for their partition of X. The label of
each data point x; is stored in a component [; of an n-
dimensional vector. This eliminates concurrent writes when
updating clusters and simplifies bookkeeping. After the la-
beling stage the threads are synchronized to ensure that all
data for the centroid update stage is available. The cen-
troid update stage could then be executed by a reduction
operation. However, for the sake of simplicity it is assumed
that the master thread executes this stage sequentially. In-
stead of iterating over all centroids the master thread iterates
over all labels partially calculating the new centroids. A k-
dimensional vector m is updated in each iteration where
each component m; holds the number of data points as-
signed to cluster C; . Next another loop over all centroids
is performed scaling each centroid c; by m% giving the fi-
nal centroids. Convergence is also determined by the mas-
ter thread by checking whether the last labeling stage in-
troduced any changes in the clustering. Slave threads are
signaled to stop execution by the master thread as soon as
convergence is achieved. Algorithm 2 describes the proce-
dure executed by each thread.

3.4 Computational Complexity

In this section the number of operations executed by k-
means in each iteration is investigated. This number is equal
for both implementations. It therefore serves as the basis for
comparing runtime behavior in section 6.

For the computational complexity analysis each floating
point operation is counted as one computational unit. Addi-
tions, multiplications and comparisons are considered to be
floating point operations. Also, the seeding stage is ignored
in this analysis.

The labeling stage consists of evaluating the distance
from each data point x; to each centroid c;. Given an eu-
clidean distance metric each distance calculation consists
of one subtraction, one multiplication and one addition per
dimension totaling in 3d operations. Additionally a square
root is calculated adding another operation per distance cal-
culation. Finding the centroid nearest to a data point x; is
an iterative process where in each iteration a comparison
between the last minimal distance and the current distance
is performed. This adds another operation to the total num-
ber of operations per labeling step. There is a total of nk
labeling resulting in the total numbers of operations of

Olabeling = 3nkd + 2nk = nk:(3d + 2) 2)

operations for the labeling stage in each iteration.

In each iteration of the centroid update stage the mean
for each cluster C; is calculated consisting of adding |C}|
d-dimensional vectors as well as dividing each component
of the resulting vector by |C;|. In total n d-dimensional
vectors are added yielding nd operations plus kd operations
for the scaling of each centroid c; by ﬁ For the labeling
stage there are thus

Oupdate = nd + kd = d(n + k) 3)

operations executed per k-means iteration. The total
number of operations per k-means iteration is given by

Oiteration - Olabeling + Oupdate - nk(?)d + 2) + d(TL + k)

“)

From equations 2 and 3 it can be observed that the la-

beling stage is clearly the most costly stage per iteration. If

d < n and k < n the labeling stage contributes insignifi-

cantly to the total number of operations making the labeling
stage the dominant factor.

4 CUDA

With the advent of the unified shader model the separa-
tion of vertex and fragment shader processors in hardware
has vanished. Shader processors can now be configured to
perform both tasks depending on the requirements of the
application. Also, a third kind of shader, the geometry
shader was introduced that allows generation of geometry
in hardware on the fly [20]. Starting from the G80 family
of GPUs NVIDIA supports this new shader model result-
ing in a departure from previous GPU designs. The GPU
is now composed of so called multiprocessors that house a
number of streaming processors ideally suited for massively
data-parallel computations.

NVIDIA’s CUDA is build on top of this new architec-
ture eliminating the need to reformulate computations to the

graphics pipeline. The GPU is viewed as a set of multipro-
cessors executing concurrent threads in parallel. Threads
are grouped into thread blocks and execute the same instruc-
tion on different data in parallel. One or more thread blocks
are directly mapped to a hardware multiprocessor where
time sharing governs the execution order. Within one block
threads can be synchronized at any execution point. A cer-
tain execution order of threads within a block is not guaran-
teed. Blocks are further grouped into a grid, communication
and synchronize among blocks is not possible,execution or-
der of blocks within a grid is undefined. Threads and blocks
can be organized in three and two dimensional manners re-
spectively. A thread is assigned an id depending on its po-
sition in the block, a block is also given an id depending on
its position within a grid. Thread and block id of a thread is
accessible at runtime allowing for specific memory access
patterns based on the chosen layouts. Each thread on the
GPU executes the same procedure known as a kernel [12].

Threads have access to various kinds of memory. Each
thread has very fast thread local registers and local memory
assigned to it. Within one block all threads have access to
block local shared memory that can be accessed as fast as
registers depending on the access patterns. Registers, local
memory and shared memory are limited resources. Portions
of device memory can be used as texture or constant mem-
ory which benefit from on-chip caching. Constant memory
is optimized for read-only operations, texture memory for
specific access patterns. Threads also have access to un-
cached general purpose device memory or global memory
[12].

Various pitfalls exist that can degrade performance of the
GPU. Shared memory access by multiple threads in parallel
can produce so called bank conflicts serializing execution
of those threads and therefore reducing parallelism. Sec-
ond, when accessing global memory addresses have to be a
multiple of 4, 8 or 16, otherwise an access might be com-
piled to multiple instructions and therefore accesses. Also,
addresses accessed simultaneously by multiple threads in
global memory should be arranged so that memory access
can be coalesced into a single continuous aligned memory
access. This is often referred to as memory coalescing. An-
other factor is so called occupancy. Occupancy defines how
many blocks and therefore threads are actually running in
parallel. As shared memory and registers are limited re-
sources the GPU can only run a specific number of blocks
in parallel. It is therefore mandatory to optimize the us-
age of shared memory and registers to allow to run as many
blocks and threads in parallel as possible [12].

The CUDA SDK gives the developer easy to use tools
that fully integrate with various C++ compilers. Code for
the GPU is written in a subset of C with some extensions
and can coexist with CPU (host) code in the same source
file. The host code is responsible for setting up the lay-

out of blocks and threads as well as uploading data to the
GPU. Kernel execution is performed asynchronously, prim-
itives to synchronize between CPU and GPU code are avail-
able. Debugging of device code is possible but only in an
emulation environment that runs the kernel on the CPU in
heavyweight threads which does not simulate all peculiari-
ties of the GPU. For more in depth information on CUDA
the reader is referred to [12].

5 Parallel K-Means via CUDA

This section describes the CUDA based implementation
of the algorithm outlined in section 3.3. In the first sub sec-
tion the overall program flow is described. The next sub-
section presents the labeling stage on the GPU followed by
section 5.3 outlining the data layout used and CUDA spe-
cific optimizations employed to further speed up the imple-
mentation.

5.1 Program Flow

The CPU takes the role of the master thread as described
in section 3.3. As a first step it prepares the data points and
uploads them to the GPU. As the data points do not change
over the course of the algorithm they are only transfered
once. The CPU then enters the iterative process of labeling
the data points as well as updating the centroids. Each iter-
ation starts by uploading the current centroids to the GPU.
Next the GPU performs the labeling as described in section
5.2. The results from the labeling stage, namely the mem-
bership of each data point to a cluster in form of an index,
are transfered back to the CPU. Finally the CPU calculates
the new centroid of each cluster based on these labels and
performs a convergence check. Convergence is achieved
in case no label has changed compared to the last itera-
tion. Optionally a thresholded difference check of the over-
all movement of the centroids can be performed to avoid
iterating infinitely for some special cluster configurations.

5.2 Labeling Stage

The goal of the labeling stage is to calculate the near-
est centroid for each data point and store the index of this
centroid for further processing by the centroid update stage
on the CPU. Therefore each thread has to calculate which
data points it should process, label it with the index of the
closest centroid and repeat this for any of its remaining data
points. The task for each thread is thus divided into two
parts: calculate and iterate over all data points belong to the
thread according to a partitioning schema and performing
the actual labeling for the current data point. The following
paragraphs will thus first discuss the partitioning schema

and the first part of this task followed by a description of
the actual labeling step.

As discussed in section 4 the GPU slightly differs from
the architecture assumed in section 3.3. Threads are addi-
tionally grouped into blocks that share local memory. In-
stead of assigning each thread a chunk of data points, each
block of threads is responsible for one or more chunks. One
such chunk contains ¢ data points where ¢ is the number of
threads per block. As the amount of threads per block as
well as blocks is limited by various factors, such as used
registers, each block processes not only one but several
chunks depending on the total amount of data points. De-
noting the amount of data points by n then

Nchunks = [’I'L/t—l (5)

gives the number of chunks to be processed. Note that
the last chunk does not have to be fully filled as n does not
have to be a multiple of £. This chunks have to be partitioned
among the number of blocks b. Two situations can arise:

1. nepunks mod b = 0, no block is idle
2. Nehunks Mod b # 0, b — Nepunks blocks are idle

Therefore each block processes at least |ncpunks/b]
chunks. The first n.pyunks mod b blocks process the re-
maining chunks. For each chunk one thread within a block
labels exactly one data point. For chunks that have less data
points than there are threads within a block some threads
will be idle and not process a data point. Based on the par-
titioning schema described each thread processes at most
Nchunks data points. For each data point a thread there-
fore has to calculate the index of the data point based on
it’s block and thread id. This is done iteratively in a loop.
The thread starts by calculating the index of its data point
of the first chunk to be processed by the thread’s block ex-
pressed by block.id + thread.id. In each iteration the next
data point’s index is calculating by adding tb to the last data
points index. In case the calculated index is bigger than
n — 1 the thread has processed all it’s data points. No thread
can terminate before the other threads within the same block
so any thread that is done processing all its data points has
to wait for the other threads to finish processing their re-
maining data points. Therefore each thread iterates [n/tb]
times and simply does not execute the labeling code in case
its current data point index is bigger than n — 1. To mini-
mize the number of idling threads it is therefore mandatory
to adjust the number of blocks to the number of data points
minimizing n mod t¢b.

The actual labeling stage is again composed of two dis-
tinct parts. A thread has to calculate the distance of its cur-
rent data point to each centroid. In the implementation pre-
sented here all threads within a block calculate the distance
to the same centroid at any one time. This allows loading

the current centroid to the block’s local shared memory ac-
cessible by all threads within the block. For each centroid
the threads within the block therefore each load a compo-
nent of the current centroid to shared memory. Each thread
then calculates the distance from their data point to the cen-
troid in shared memory fetching the data point’s compo-
nents from global memory in a coalesced manner. See sec-
tion 5.3 on the data layout used for coalescing reads and
writes. Loading the complete centroid to memory limits
the amount of dimensions as shared memory is restricted to
some value, on the hardware used it’s 16 kilobytes. Given
that components are encoded as 32-bit floating point values
this roughly equals a maximum dimension count of 4000.
To allow for unlimited dimensions the process of loading
and calculating the distance from a data point to a centroid
is done in portions. In each iteration ¢ components of the
centroid are loaded to shared memory. For each component
the partial euclidean distance is calculated. Depending on d
not all threads have to take part in loading the current com-
ponents to memory, so some threads might idle. When all
threads have evaluated the nearest centroid the resulting la-
bel, being the index of the centroid a data point is nearest to,
is written back to global memory. The labels for each data
point are stored in an additional vector component.

After all blocks have finished processing their chunks the
CPU is taking over control again, downloading the labels
calculated for constructing the new centroids and checking
for convergence. The next section describes the data layout
as well as other optimizations.

5.3 Data Layouts & Optimizations

A GPU-based implementation of an algorithm that is
memory bound, as is the case with k-means, can yield very
poor performance when the GPU’s specifics are not taken
into account. For memory throughput these specifics de-
pend on the memory type used for storing and accessing
data on the GPU as described in section 4. For the k-means
implementation presented in this paper global memory was
chosen as the storage area for the data points and centroids.
As data points are only read during the labeling stage on the
GPU, storage in constant or texture memory might have in-
creased memory throughput to some degree. However, tex-
ture and constant memory restrict the maximum amount of
data and therefore processable data points and centroids, a
drawback earlier GPU-based k-means implementations suf-
fered from as described in section 2. Global memory on the
other hand allows gather and scatter operations and permits
to use almost all of the memory available on the GPU. For
global memory coalescing reads and writes are mandatory
to achieve the best memory throughput. All vectors are as-
sumed to be of dimensionality d and stored in dense form.

As described in the last section centroids are loaded from

global memory to shared memory in portions, each portion
being made up of at most ¢ components. As ¢ threads read
in subsequent components at once the centroids are stored
as rows in a matrix, achieving memory coalescing.

Data points are stored differently due to the order in
which components are accessed. Here, each thread accesses
one component of its current data point simultaneously to
the other threads. Therefore data points are stored column
wise again providing memory coalescing. Additionally a
component is added as the first component of each vector
where each threads writes the label of the closes centroid to
for further processing by the CPU. This layout also allows
downloading this labels in a bulk operation.

For both centroids and data points special CUDA API
methods where used that allocate memory at address being
a multiple of 4 yielding the best performance.

As the implementation of k-means using an euclidean
distance metric is clearly memory bound further optimiza-
tions have been made by increasing occupancy. This was
achieved by decreasing the amount of registers each thread
uses. Specifically counter variables for the outer loops are
stored in shared memory. This optimization increased per-
formance by around 25%. The program executed by each
thread uses 10 registers. The optimal number of threads is
therefore 128 according to the NVIDIA CUDA Occupancy
Calculator included in the CUDA SDK.

As descibed in section 5.2 partial or entire thread blocks
can be idle depending on the ratio between the number of
blocks and threads within a block to the number of data
points. To reduce the effect of idle blocks on performance
the block count is adapted to the number of data points to
be processed, minimizing ncpynks mod b.

The next section discusses experiments and their results
for the k-means implementation presented in this section.

6 Experiments & Results

Experimental results where obtained on artificial data
sets. As the performance is not dependant on the actual
data distribution the synthetic data sets were composed of
randomly placed data points. To observe the influence of
the number of data points on the performance data sets with
500, 5000, 50.000 and 500.000 instances were created. For
each instance count 3 data sets were created with 2, 20 and
200 dimensions.

The sequential k-means implementation and the centroid
update phase for the gpu-base k-means was coded in C us-
ing the Visual C++ 2005 compiler as well as the Intel C++
compiler 10.1. For both compilers full optimizations were
enabled, favoring speed over size as well as using proces-
sor specific extensions like SSE3. In the case of the Intel
C++ compiler all vector related operations such as distance
measurements, additions and scaling were vectorized using

SSE3. The CUDA portions of the code were compiled us-
ing the CUDA Toolkit 2.0.

The test system was composed of an Intel Core 2 Duo
E8400 CPU, 4 GB RAM running Windows XP Professional
with Service Pack 3. The GPU was an NVIDIA GeForce
9600 GT hosting 512 MB of RAM, the driver used was the
NVIDIA driver for Windows XP with CUDA support ver-
sion 178.08.

Figures 1 and 2 present the speedups gained by using
the GPU for the labeling stage. While full optimizations
were turned on for the Visual C++ the GPU-based imple-
mentation outperformed it by a factor of 4 to 43 for all but
the smallest data set. A clear increase in performance can
be observed the higher the number of instances dimensions
and clusters.

For the fully optimized Intel C++ version the speedups
are obviously smaller as this version makes use of the SIMD
instruction-set of the CPU. A speedup by a factor of 1.5 to
14 can be observed for all but the smallest data set. Inter-
estingly this version performs better for lower dimensional-
ity for high instance counts. This is due to the fact that as
the centroid update time decreases due to optimization the
transfer time starts to play a bigger role. Nevertheless there
is still a considerable speedup observable.

The diagrams in figure 3 also explain why the GPU-
based implementation does not match the CPU implemen-
tation for very small data sets. From the plot it can be seen
that for 500 data points nearly all the time is spent on the
GPU. This time span also includes the calling overhead for
invoking the GPU labeling stage. This invocation time ac-
tually takes longer than labeling the data items.

The GPU-based implementation is clearly memory
bound as there are more memory accesses than floating
point operations. Therefore the approximate data through-
put rate for the labeling stage was also computed. The
values ranged from 23GB/s to 44GB/s depending on the
instance and cluster count as well as dimensionality. For
the used hardware the peak performance is given as 57.6
GB/s. Therefore we are highly confident that the imple-
mentation is nearly optimal. Due to being memory bound
the GFLOP counts do of course not reach the hardwares
peak values. 26GFLOP/s to 36GFLOP/s could be achieved
approximately.

For some test runs slight variations in the resulting cen-
troids were observed. These variations are due to the use of
combined multiplication and addition operations (MADD)
that introduce rounding errors. Quantifying these errors was
out of the scope of this work, especially as no information
from the vendor on the matter was available.

500 Paints

=20

2 4 8 16 32 64 128
Clusters

50.000 Points

=20

2 4 g 16 32 B4 128
Clusters

w200

Speedup
=1

w200

5000 Points
b3
2 v
v
o 18 W -5
B 7 =20
2 10
= v w200
5 i
D e
0
2 4 8 16 32 B4 128
Clusters
500.000 Points
a5
Eli
35
il
b3 -7

=20
w200

2 4 8 16 32 B4 128
Clusters

Figure 1. Speedup measured against the
Visual C++ compiler for various instance

counts and dimensions

500 Points
05
045
v
0.4 7
035 W
03 v
s -
E 025 s 7 o
2 0z =20
“ 48
01
0.05 el ——i

o
2 4 g 16 32 64 128

Clusters

50.000 Points

Speedup
R T T JE I

2 4 1 16 32 B4 128
Clusters

Speedup
.

5000 Pairts
45
! 7
3s Rvs
235 v -
7 2

=20

2 4 g 16 32 B4 128
Clusters

500,000 Points

Speedup

T 200

Clusters

Figure 2. Speedup measured against Intel
C++ compiler for various instance counts and

dimensions

15 = T 200
1
0s

500 Poirts, 200 Dimensions 5000 Points, 200 Dimensions

100% 100%.
0% 0%
80% &0%
T0% 0%
B0% O Transter B0% O Transter
0% H Centroid 50% B Centroid
40% Updiste i 40% Update
0% B abeling 0% B Labeling
20% 20%
10% 10%
0% 0%

2 4 8 16 32 B4 128 2 4 & 16 32 B4 128
Clusters Clusters

Time
Timne

50.000 Points, 200 Dimensions 500.000 Paoints, 200 Dimensions

100% 100%
90% 0%
B80% 80%
T0% 0%
B0% O Transter B0% O Transfer
0% W Centroid E 50% B Centraid
40% Updste = 409 Update
30% B Lsbeling 30% HLabsling
20% 20%
10% 10%
0% 0%

2 4 8 16 32 B4 128 2 4 § 16 32 64128
Clusters Clusters

Time

Figure 3. Percentage of time used for the dif-
ferent stages on the GPU

7 Conclusion & Future Work

Exploiting the GPU for the labeling stage of k-means
proved to be beneficial especially for large data sets and
high cluster counts. The presented implementation is only
limited in the available memory on the GPU and therefore
scales well. However, some drawbacks are still present.
Many real-life data sets like document collections operate
in very high dimensional spaces where document vectors
are sparse. The implementation of linear algebra operations
on sparse data on the GPU has yet to be solved optimally.
Necessary access patterns such as memory coalescing make
this a very hard undertaking. Also, the implementation pre-
sented is memory bound meaning that not all of the GPUs
computational power is harvested. Finally, due to round-
ing errors the results might not equal the results obtained
by a pure CPU implementation. However, our experimental
experience showed that the error is negligible.

Future work will involve experimenting with other k-
means variations such as spherical or kernel k-means that
promise to increase the computational load and therefore
better suit the GPU paradigm. Also, an efficient implemen-
tation of the centroid update stage on the GPU will be in-
vestigated.

References

[1] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clus-
tering: a review. ACM Comput. Surv., 31(3):264-323,

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

September 1999.

Jian Yi, Yuxin Peng, and Jianguo Xiao. Color-based
clustering for text detection and extraction in image.
In MULTIMEDIA °07: Proceedings of the 15th inter-
national conference on Multimedia, pages 847-850,
New York, NY, USA, 2007. ACM.

Dannie Durand and David Sankoff. Tests for gene
clustering. In RECOMB ’02: Proceedings of the sixth
annual international conference on Computational bi-
ology, pages 144-154, New York, NY, USA, 2002.
ACM.

Adil M. Bagirov and Karim Mardaneh. Modified
global k-means algorithm for clustering in gene ex-
pression data sets. In WISB ’06: Proceedings of the
2006 workshop on Intelligent systems for bioinformat-
ics, pages 23-28, Darlinghurst, Australia, Australia,
2006. Australian Computer Society, Inc.

Shi Zhong. Efficient streaming text clustering. Neural
Netw., 18(5-6):790-798, 2005.

Stuart P. Lloyd. Least squares quantization in
pcm. IEEE Transactions on Information Theory,
28(2):129-136, 1982.

J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In L. M. Le
Cam and J. Neyman, editors, Proc. of the fifth Berkeley
Symposium on Mathematical Statistics and Probabil-
ity, volume 1, pages 281-297. University of California
Press, 1967.

David Arthur and Sergei Vassilvitskii. k-means++: the
advantages of careful seeding. In Nikhil Bansal, Kirk
Pruhs, and Clifford Stein, editors, SODA, pages 1027—
1035. SIAM, 2007.

Jens Kriiger and Riidiger Westermann. Linear algebra
operators for gpu implementation of numerical algo-
rithms. In SIGGRAPH "03: ACM SIGGRAPH 2003
Papers, pages 908-916, New York, NY, USA, 2003.
ACM.

Ian Buck, Tim Foley, Daniel Horn, Jeremy Sugerman,
Kayvon Fatahalian, Mike Houston, and Pat Hanrahan.
Brook for gpus: stream computing on graphics hard-
ware. In SIGGRAPH '04: ACM SIGGRAPH 2004
Papers, pages 777-786, New York, NY, USA, 2004.
ACM.

Mark Harris. Mapping computational concepts to
gpus. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Courses, page 50, New York, NY, USA, 2005. ACM.

[12]
[13]
[14]

[15]

[16]

Nvidia cuda site, 2007.
Ati close to metal guide, 2007.

Hiroyuki Takizawa and Hiroaki Kobayashi. Hierarchi-
cal parallel processing of large scale data clustering on
a pc cluster with gpu co-processing. J. Supercomput.,
36(3):219-234, 2006.

Jesse D. Hall and John C. Hart. Gpu acceleration of it-
erative clustering. Manuscript accompanying poster at
GP2: The ACM Workshop on General Purpose Com-
puting on Graphics Processors, and SIGGRAPH 2004
poster (2004).

Feng Cao, Anthony K. H. Tung, and Aoying Zhou.
Scalable clustering using graphics processors. In
WAIM, pages 372-384, 2006.

P. Drineas, A. Frieze, R. Kannan, S. Vempala, and
V. Vinay. Clustering large graphs via the singular
value decomposition. Mach. Learn., 56(1-3):9-33.

Leon Bottou and Yoshua Bengio. Convergence prop-
erties of the K-means algorithms. In G. Tesauro,
D. Touretzky, and T. Leen, editors, Advances in Neu-
ral Information Processing Systems, volume 7, pages
585-592. The MIT Press, 1995.

Inderjit S. Dhillon and Dharmendra S. Modha. A data-
clustering algorithm on distributed memory multipro-
cessors. In Large-Scale Parallel Data Mining, Lecture
Notes in Artificial Intelligence, pages 245-260, 2000.

David Luebke and Greg Humphreys. How gpus work.
Computer, 40(2):96-100, 2007.

